IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 1

Supplementary Material for
User-Level Implementations of Read-Copy Update

Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel Rydbais and Jonathan Walpole

Abstract—Read-copy update (RCU) is a synchronization tech-
nique that often replaces reader-writer locking because RCU’s
read-side primitives are both wait-free and an order of magnitude
faster than uncontended locking. Although RCU updates are
relatively heavy weight, the importance of read-side performane

versions of an object and for deferring reclamation of old
versions. These mechanisms distribute the work betweeh rea
and update paths so as to make read paths extremely fast,
typically more than an order of magnitude faster than un-

is increasing as computing systems become more responsive tontended locking. RCU's light-weight read paths suppoet t

changes in their environments.

RCU is heavily used in several kernel-level environments.
Unfortunately, kernel-level implementations use facilities that
are often unavailable to user applications. The few prior user-
level RCU implementations either provided inefficient read-
side primitives or restricted the application architecture. This
paper fills this gap by describing efficient and flexible RCU
implementations based on primitives commonly available to user-
level applications.

Finally, this paper compares these RCU implementations with
each other and with standard locking, which enables choosing
the best mechanism for a given workload. This work opens the
door to widespread user-application use of RCU.

Index Terms—D.4.1.f Synchronization < D.4.1 Process Man-
agement < D.4 Operating Systems < D Software/Software
Engineering, D.4.1.g Threads< D.4.1 Process Management. D.4
Operating Systems< D Software/Software Engineering, D.4.1.a
Concurrency < D.4.1 Process Managemenk D.4 Operating
Systems< D Software/Software Engineering

I. INTRODUCTION

EAD-COPY UPDATE (RCU) is a synchronization tech

nigue that was added to the Linux kernel in October

increasing need to track read-mostly connectivity, hardwa
configuration, and security-policy data. Other mechanisms
must be used to coordinate among multiple writers, for ex-
ample locking, transactions, non-blocking synchronaatior
single designated updater thread.

Techniques similar to RCU have appeared in several
operating-system kernels [1, 2, 3, 4, 5], and, as shown in
Figure 1, RCU is heavily used in the Linux kernel [6].
One reason RCU is heavily used is that it eases lock-based
programming when the locks themselves are dynamically
created and destroyed, which occurs frequently in conntrre
programs. However, RCU is not heavily used in applica-
tions, in part because prior user-level RCU-like algorishm
severely constrained application design [7], incurredviiea
read-side overhead [8, 9], or relied on sequential comgigte
and garbage collection [10, 11]. The popularity of RCU in
operating-system kernels owes much to the fact that ker-
nels can accommodate the global constraints imposed by the
high-performance quiescent-state based reclamation RPSB

‘class of RCU implementations. QSBR implementations pro-

ide unmatched performance and scalability for read-mostl

2002. In contrast with conventional locking techniquest th"ﬁ‘lata structures on cache-coherent shared-memory muakigro

ensure mutual exclusion among all threads, or with readgfrs (7], even with weakly ordered hardware and compilers.
writer locks that allow readers to proceed concurrentlyhwit

each other, but not with updaters, RCU permits both readers
and updaters to make concurrent forward progress. RCU en-

sures that reads are coherent by maintaining multiple wessi

of objects and ensuring that each version remains intadt unt
the completion of all RCU read-side critical sections that
might reference that version. RCU defines and uses efficient
and scalable mechanisms for publishing and reading new

Manuscript received August 17, 2009; revised November 12020

Mathieu Desnoyers (mathieu.desnoyers@efficios.com) is W&ffitiOS,
work done while at the Computer and Software Engineering BDeyest,
Ecole Polytechnique de Montreal.

Paul E. McKenney (paulmck@linux.vnet.ibm.com) works at thiel IBnux
Technology Center on the Linaro project.

Alan S. Stern (stern@rowland.harvard.edu) is with the RodlInstitute,
Harvard University.

Michel R. Dagenais (michel.dagenais@polymtl.ca) is with @@mputer
and Software Engineering Department, Ecole Polytechniguiddntreal.

Jonathan Walpole (walpole@cs.pdx.edu) is with the CompBigence
Department, Portland State University.

This work has been submitted to the IEEE for possible puliinat
Copyright may be transferred without notice, after whicts thersion may
no longer be accessible.

4000

3500 [~

3000 [~

2500 |-

2000

#RCU API Uses

1500 |-

1000 -

500

2002

2003

2004 -
2005 -
2006
2007 -
2008 -
2009 -
2010 -
2011

Year

Fig. 1. Linux-Kernel Usage of RCU

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 2

Pre—existing reads

Whereas we cannot yet put forward a single user-level RCU

implementation that is ideal for all environments, the ¢hre reureag ook | '°”*read*“”"°°k()
classes of RCU implementations described in this paperddhou Reader1 [Teads] | ;re#ds (] oads |
suffice for most user-level uses of RCU. 0 1 j

This article is organized as follows: Section Il first pravid 2 Reader 2 [reads [| [reads] |
a brief overview of RCU, including RCU semantics. Then, @ Reader3 [reads | [1] reads |
Section Il describes user-level scenarios that could fitene IE Reader 4 | %l — | | s
from RCU. This is followed by the presentation of three ‘ ‘
classes of RCU implementation in Section IV. Section V Updater ‘ removal ‘ grace period | reclamation
presents experimental results, comparing RCU implementa- Time 77 1
tions to each other and to locking, and finally Section VI -
presents conclusions and recommendations. reu_assign_pointer() Grace period

synchronize_rcu() waits for completion

of pre-existing reads

Il. BRIEF OVERVIEW OF RCU
This overview begins with an introduction to RCU Con-Flg' 2. Schematic of RCU Grace Period and Read-Side Critieatiéhs

cepts in Section II-A. Section 1I-B shows how to delete
an element from an RCU-protected linked list in spite of
concurrent readers. Section 1I-C presents a list of inféerma
RCU desiderata, which details the goals pursued in this work
Finally, Section II-D gives a more detailed description @&

semantics and guarantees. any readers. A high-level schematic of such an RCU-based

. algorithm is shown in Figure 2. Here, each box labeled “réads
A. Conceptual View of RCU Algorithms is an RCU read-side critical section.

RCU readers execute withiRCU read-side critical sec-

tions. Each such_crmcal section begins witbu_read_- Each row of read-side critical sections denotes a separate
lock() , ends withrcu_read_unlock() , and may con-

) : . thread, for a total of four read-side threads. The bottomabw
tain rcu_dereference() or equivalent functions that ac-

- . the figure denotes a fifth thread performing an RCU update.
cess pointers to RCU-protected data structures. Theséepoi his %CU update is split into twg phases?a removal ?)hase

access functions implement the notion of a dependenca/ﬁ the lower left of the figure and a reclamation phase on

ordered Ioad: also known asmemory_order_con;ume .ﬁhe lower right. These two phases must be separated by a
load [12], which suppresses aggressive code-motion cempi

optimizations and generates a simple load on any system otﬂ[;ace period, for example via theynchronize_rcu()
. iti hich initiat i its for it t
than DEC Alpha, where it generates a load followed by primitive, which initiates a grace period and waits for it to

N . . ffhish. During the removal phase, the RCU update removes

memory-barrier instruction. The performance benefits OURCeIements from a shared data structure (possibly inserting

are due to the fact thatcu_read_lock() and rcu_- . . :

read_unlock() are exceedingly fast. In fact, Section IV—CSome as well) by callingreu_assign_pointer() or
= INgly T an equivalent pointer-replacement function. Tiwel_as-

will show how these two primitives can incur exactly zerg

. i . i i imitive impl h i f
overhead, as they do in server-class Linux-kernel buil@3. [1 felzgllgz;spglgg]rowhich grr:rzlgvﬁe':lf;ﬁmsg:zitstgnrgoéfg t?mfézre
When a thread is not in an RCU read-side critical sectio ! d y

n
o . . . ofdered systems compiles to a simple assignment. Pointers
it is in a quiescent stateA quiescent state that persists for Y P P 9

L ; o . stored byrcu_assign_pointer() can be fetched from
a significant time period is aextended quiescent stat&ny ithin read-side critical sections byu_dereference()

. : : . . W
grr?ee F:ﬁgsogegtugtnagte\'\ilglcgcivegi;gfgg i?r?sli:se(irqaltne\a/uerleaﬁﬁe removed data elements will only be accessible to redal-si
RCUqread side critical g;ctionpthat Starts beﬁ‘ore a arage i critical sections that ran concurrently with the removahgd

9 ® éshown in gray), which are guaranteed to complete before the

must end beforg that grace period does. Distinct gracedxgn grace period ends. Therefore the reclamation phase caly safe
may overlap, either partially or completely. Any time petio free the data elements removed by the removal phase
that includes a grace period is by definition itself a grace '

period [13, 14]. Each grace period is guaranteed to complete
as long as all read-side critical sections are finite in domat A single grace period can serve multiple removal phases,
thus even a constant flow of such critical sections is unabledven those carried out by multiple updaters. Furthermbuee, t
extend an RCU grace period indefinitely. overhead of tracking RCU grace periods can be piggybacked
Suppose that readers enclose each of their data-structomeexisting process-scheduling operations, to which RCii$ad
traversals in an RCU read-side critical section. If an updata small constant overhead. For some common workloads, the
first removes an element from such a data structure and thlggace-period-tracking overhead of RCU during a given time
waits for a grace period, there can be no more readers accésterval may be amortized over an arbitrarily large numifer o
ing that element. The updater can then carry out destructR€U updates in that same interval [17], resulting in average
operations, for example freeing the element, without dishig per-RCU-update overheads arbitrarily close to zero.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 3

0 s C. User-Space RCU Desiderata
A A ' A))) .)
Reader inmated* ’ 3 : Extensive use of RCU within the practitioner community
before sart o [&] =[] has lead to the following user-space RCU desiderata:
[c] 1) RCU read-side primitives must hag¥1) computational
complexity with a small constant, thus enabling real-
time use and avoiding lock-based deadlocks. “Small
Reader initiated constant” means avoiding expensive operations such as
after start of = cache misses, atomic instructions, memory barriers, and,
grace period X .
where feasible, conditional branches [19].

2) RCU read-side primitives should be usable in all con-
texts, including nested within other RCU read-side crit-
ical sections and inside user-level signal handlers [13].

3) RCU read-side primitives must be unconditional, with
neither failure nor retry, thus avoiding livelocks [20].

! ! = 4) RCU readers must not starve writers, even given arbitrar-

Grace period ily high rates of time-bounded read-side critical sections
5) RCU read-side critical sections may not contain opera-
tions that wait for a grace period, such sychro-
nize_rcu() (it would self-deadlock), nor may they
B. RCU Deletion From a Linked List acquire locks that are held across callsstimchro-

) , , nize_rcu() . However, non-interfering lock acquisi-
RCU-protected data structures in the Linux kernel include tion/release and other non-idempotent operations such
linked lists, hash tables, radix trees, and a number of ousto as 1/0 should be permitted [21].

built data structures. Figure 3 shows how RCU may be used to6)
delete an element from a linked list that is concurrentlyngei
traversed by RCU readers, as long as each reader conducts its
traversal within the confines of a single RCU read-sideaziti
section. The first and second rows present the data structure
from the viewpoint of a reader thread that started beforst(fir
row) or after (second row) the grace period began. The last ro
of the figure shows the updater’s view of the data structure. 7)
The first column of the figure shows a singly-linked list with
elementsA, B, and C. Any reader initiated before the grace
period might hold references to any of these elements.

=

isynchronize_rcu():

.

[c]

a list_del_rcu(B)

free(B)

Fig. 3. RCU Linked-List Deletion

Mutating RCU-protected data structures must be permit-
ted within RCU read-side critical sections, for example
by acquiring the lock used to protect updates [21]. Such
lock acquisitions can be thought of as unconditional
read-to-write upgrades. However, any lock acquired
within a read-side critical section cannot be held while
waiting for a grace period.

RCU primitives should be independent of memory allo-
cator design and implementation [20].

Although in-kernel RCU implementations are common,
.) . making them availabl r lications is n ractical
The list_del_rcu() routine unlinks elemenB from 1aKing them available to use app catio SIS ot practica

Firstly, many kernel-level RCU implementations assumé tha

the list, but leaves the link fronB to C intact, as shown . o . .
: . : RCU read-side critical sections cannot be preempted, which
on the second column of the figure. This permits readers

already referencingd to advance toC, as shown on the iS" not the case at user level. Secondly, a user application
y . . ' " invoking kernel-level RCU primitives could hang the system
second and third columns of the figure. The transition froen th L . i L2 .

: .) by remaining in an RCU read-side critical section indeflgite
second to the third column shows elemBrttisappearing from

X) : X e Finally, invoki in-k I R impl ion f
the reader-thread viewpoint. During this transition, edetB inafly, Invoxing any n-xerne CU imp ementatl'on rom
L - _user-level code introduces system-call overhead, viajatthe
moves fromglobally visible where any reader may obtain

o First desideratum above.
new reference, tdocally visible where only readers already In contrast, the RCU implementations described in Sec-

having a referen_ce can see eIem_Br_lt_ . tion IV are designed to meet the above list of desiderata with
The synchronize_rcu() primitive waits for a grace
acceptably low overheads.

period, after which all pre-existing read-side criticattsens
will have completed, resulting in the state shown in the tlour))
column of the figure, where readers no longer hold referendds Overview of RCU Semantics

to elementB. ElementB's transition fromlocally visible to RCU semantics comprise ttgrace-period guaranteand
privateis denoted by the white background for tBédox. It is the publication guaranteeAs noted earlier, concurrent modi-
then safe to invokéree() , reclaiming elemenB's memory, fications of an RCU-protected data structure must be coordi-

as shown in the last column of the figure. nated by some other mechanism, for example, locking.
Although RCU has many uses, this list-deletion process is1l) Grace-Period Guarantee:As noted in Section II-A,

frequently used to replace reader-writer locking [18]. RCU read-side critical sections are delimited byu_-
read_lock() and rcu_read_unlock() , and RCU

Linterestingly enough, placing non-blocking-synchrotiga (NBS) [15] grace periods are periods of time such that all RCU read-
updates in RCU read-side critical sections admits the samdiigagons to

NBS algorithms that are commonly provided by automatic garbatectors. SId€ Critic_al sections in existence at t.he beginning of amiv
In particular, this approach avoids the ABA problem [16]. grace period have completed before its end.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 4

Somewhat more formally, consider a group of statemerttsis concurrency correctly and easily: even on weakly ader

R; within a single RCU read-side critical section: systems, any dereference of a pointer returnedrdy -
rcu_read_lock() ; dereference() is guaranteed to see any change prior
Ro: Ry: Ro; ... to the correspondingcu_assign_pointer() , including
rcu_read_unlock() : any change prior to any earliecu_assign_pointer()

involving that same pointer.

Consider also groups of statement$,, (some of which Somewhat more formally, suppose thati_assign_ -

may mutate shared data structures) dng (some of which

ointer is used as follows:
may destroy shared data structures) separateslybghro- P 0) .
nize_rcu() Iy; Iy; Io; ...; rcu_assign_pointer(g,p) ;
Mo';Wf My: ...:synchronize_rcu() : Do: Dy: Dy: ... Where eachi; is a statement (including those initializing fields

in the structure referenced by local pointey, and where
global pointerg is visible to reading threads. This initialization
sequence is part of th&f,,, sequence of statements discussed
earlier.

. _ The body of a canonical RCU read-side critical section
Vi, i(Mp — Ri) V Vi, n(R; = Dy). () would appear as follows:

In other words, a given read-side critical section cannterek ...; g = rcu_dereference(g) C Ao Ay Aol L

beyond both sides of a grace period. (Figure 2 above prOViqﬁﬁere q is a local pointer,g is the same global pointer
a striking illustration of this idea.) Formulas 2 and 3 fello updated by the earligcu_assign_pointer() (and pos-

s“traigrltforwardly and are ofteq used to validate uses of R%Iy updated again by later invocations rofi_assign. -
(*==" denotes logical implication): pointer()), and some of thed; statements dereference
g to access fields initialized by some of thg statements.
Ji,m(R; = M,,) = Vj,n(R; — D), (2) This sequence ofcu_dereference() followed by A;
In,i(Dy — R;) = ¥m, j(My, — R;). ©) statements is part of thB; sFatements d|_scussed earlier.
Then we have the following, wher#{ is thercu_ass-

In other words, if any statement in a given read-side ctiticgyn_pointer() and R is thercu_dereference() 4

section executes prior to any statement preceding a given

grace period, then all statements in that critical sectiastm M — R=Vi,j(I; = Aj). (4)

execute prior to any statement following this same graie

period. Conversely, if any statement in a given read-si gother words, |fag|verlcu_derefere_znce() §tatement
accesses the value storedgoby a givenrcu_assign_-

pointer() , then all statements dereferencing the pointer re-
6urned by thatcu_dereference() must see the effects of

y initialization statements preceding theti_assign_-
ointer() or any earliercu_assign_pointer() stor-

Then the following holds, where—%" indicates that the
statement on the left executes prior to that on the fght:

critical section executes after any statement followingvargy
grace period, then all statements in that critical sectiastm
execute after any statement preceding this same gracedlgeri
This guarantee permits RCU-based algorithms to trivial
avoid a number of difficult race conditions whose resolutio!

can otherwise result in poor performance, limited scaigbil Ing to g.

and great complexity. However, on weakly ordered systemsTh'S guarantee provides readers a consistent view of newly

this guarantee is insufficient. We also need some way "ilgded data.

guarantee that if a reader sees a pointer to a new data seuctu ?) Uses of ?CU Guaratnteeil:hese fg:age;perlod a?gaﬁ’;tb li-
it will also see the values stored during initialization oht cation guaraniees are extremely USetu’, but In ways re

structure. This guarantee is presented in the next section. always immediately obvious. This section therefore dessi

2) Publication GuaranteeNote well that the statement?; a few of the most common uses of these guarantees.

and M,,, may execute concurrently, even in the case whigre F'r;téljhey 93” dpchO\tlldeelmstentce guaragteeﬁ],hso tha.ltth.
is referencing the same data element th&} is concurrently any “provided data element accessed anywnhere within a

oy, The publcation guaante pronded e 91 RCU fextade rtcal secton s uararteed o ol
assign_pointer() andrcu_dereference() handles 9 . _ .
- - guarantees are provided by ensuring that an RCU grace period

“This description is deliberately vague. More-precise dtidins of “A — elapses between the moment a given data element is rendered
B” [12, Section 1.10] consider the individual memory locati@tzessed by inaccessible to readers and the moment this element’s nyemor
both A and B, and order the two statements with respect to each of those .
accesses. For our purposes, what matters isAhat B and B — A cant 1S reclaimed and/or reused. _
both hold. If A and B execute concurrently then both relations may fail. Second, the RCU guarantees can provigiee-safe mem-

However as a special case, Afis a store to a variable ang is a load from ory [22] by integrating RCU grace periods into the memory

that same variable, then eithdr — B (B reads the value stored by or a : ,
later value) orB — A (B reads a value prior to that stored by). allocator—for example, the Linux kernel’s slab allocatoo-pr

3Some RCU implementations may choose to weaken this guarantee\d@es type-safe memory when t8& AB_DESTROY_BY_RCU
as to exclude special-purpose operations such as MMIO sesefO-port
instructions, and self-modifying code. Such weakening ipraypriate on 4Formula 4 is not strictly correct. On some architecturgs,— Aj is
systems where ordering these operations is expensive ance e users guaranteed only ifA; carries a data dependency from the local pointer
of that RCU implementation either (1) are not using these dipgisor (2) otherwise the CPU may reorder or speculatively exeeutdefore thercu_-
insert the appropriate ordering into their own code, as mastem calls do. dereference() call. In practice this restriction does not lead to problems.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 5

. - . L . . 1 #define ACCESS_ONCE *(volatile typeof)&
flag is specified. This integration is accomplished by permit 2 e - 09 ({volatie typeoftd &)

ting a freed data element to be immediately reused, but only} fetine g?ggi‘;ﬁiggg’& v (?‘i‘éECSESS—SO_'\(‘)%EC(QX) - WD
if its type remains unchanged. The allocator must ensure thas

an RCU grace period elapses before that element’s type i§ #define barier() asm volatile(™ : : : "memory”)
permitted to change. This approach guarantees that any data

element accessed within a given RCU read-side criticalaect F19- 4. Shared-Memory Compiler Primitives

retains its type throughout that RCU read-side criticatisac

Finall lier, RCU’ -peri ik
inally, as noted earlier, RCU’s grace-period and pukibcat requiring only that the application give up one POSIX signal

guarantees can often be used to replace reader-writemtpcki : : .
As a result, the grace-period and publication guarante, SRCU update processing. Finally, Section IV-F demonsgrat

enable a wide variety of algorithms and data structures pllg)g\\;vv 0 tcr?att_etr?on-bloilklng R.CU u?date pn:nltlvest.
viding extremely low read-side overheads for read-mostiad i I(Iafhar Wi Ia roug?[tpveerw Iobsc|>me gsir;en S common
structures [7, 13, 18, 19]. Again, note that concurrent tgsla 0 all three implementations. A global varlableu_gp_-

must be handled by some other synchronization mechanisr_?{r , fracks grace periods. Each thread has a local variable

With this background on RCU, we are ready to considé'?dicatmg whether or not it is currently in a read-sideicat
how it might be used in user-leve'I applications. section, together with a snapshotroeti_gp_ctr ’s value at

the time the read-side critical section began. Hyach-

ronize_rcu() routine iterates over all threads, using these
1. USERSPACERCU USAGE SCENARIOS snapshots to wait so long as any thread is in a read-sideatriti

The user-level RCU work described later in this paper wagction that started before the current grace period.

inspired by the need to reduce the overhead and improveGrace periods can be tracked in two different ways. The

the scalability of theLTTng userspace tracer (UST), whichsimplest method, used in Section IV-C, is fau_gp_ctr

carries out performance analysis and monitoring of uselenosimply to count grace periods. Because of the possibility of

applications [23, 24]. UST imposes important constraintounter overflow, this method is suitable only for 64-bitrasc

on the user-level RCU implementation. Firstly, UST cannaéctures. The other method divides each grace period up into

require source-level modifications to the application undst, two phases and makesu_gp_ctr track the current phase.

which rules out the QSBR approach that will be presented i explained in Section IV-D below, this approach avoids the

Section IV-C. Secondly, UST must support instrumentatigsroblem of counter overflow at the cost of prolonging grace

of execution sites selected by the user at runtime. Becaysgiods; hence it can be used on all architectures.

the user is permitted to instrument signal handlers andrdjbr

functions, RCU.read-side' critical sections must be nestabl A Common Primitives

BIND, a major domain-name server used for Internet)) o

domain-name resolution, is facing scalability issues.[Sice This sectlor) describes a number of primitives that are used

domain names are read often but rarely updated, using udd-8xamples in later sections. _ _

level RCU might be beneficial. Others have mentioned pos-Figure 4 introduces primitives dealing with shared mem-

sibilities in financial applications. Finally, one can asgue ©°FY at the compiler level. TRACCESS_ONCE()primitive

that RCU has seen long use at user level in the guise of usgpPliesvolatile semantics to its argument. Th&®OAD_-

mode Linux. SHARED() primitive prohibits any compiler optimization that

In general, user-level RCU’s area of applicability appeafﬁ?ght otherwise turn a single_load into multiple Iogds (as
similar to that in the Linux kernel: to read-mostly datd"ight happen under heavy register pressure), and vice.versa

structures, especially in cases where stale data can benaccbN® STORE_SHARED() primitive acts as an assignment

modated. statement, but prohibits any compiler optimization thagimi
otherwise turn a single store into multiple stores and vice
IV. CLASSES OFRCU IMPLEMENTATIONS versa. Thebam(_ar(_) _ pnmmvg prohlblts_ any compiler
_) i _ code-motion optimization that might otherwise move loads o
This section describes several classes of RCU implemefigres across thearrier() . Among other things, we use it

tations. Section IV-A first describes some primitives thap force the compiler to reload values on each pass through a
might be unfamiliar to the reader, Section IV-B presents agajt loop. It is strictly a compiler directive; it emits no de.
example use of RCU, and then Sections IV-C, IV-D, and IV-E The smp_mb() primitive (not shown in Figure 4 be-
present user-space RCU implementations that are optimizgd,se its implementation is architecture-specific) emitslia

for different use cases. The QSBR implementation presentedmory barrier, for example, theync instruction on the

in Section IV-C offers the best possible read-side perfoea powerPC architecture iffd’ stands for “memory barrier”).

but requires that each thread periodically calls a functmn The fundamental ordering property of memory barriers can

ing the application’s design. The implementation presgitie statements

Section IV-D places almost no constraints on the applio&tio o . . .
design, thus being appropriate for use within a genergbqme Ao; Av; Az; -5 Smp_mb() ; Bo; Bi; By ...
library, but it has higher read-side overhead. Section Iv-gnd another thread executes the statements

presents an implementation having low read-side overhedd a Cy; Cy; Cs; ...; smp_mb() ; Do; Dy; Da; ...;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 6

1 pthread_mutex_t rcu_gp_lock = 1 struct lin_coefs {
2 PTHREAD_MUTEX_INITIALIZER; 2 double a, b, c;
3 LIST_HEAD(registry); 3%
4 4
5 struct rcu_reader { 5 struct lin_coefs *lin_approx_p;
6 unsigned long ctr; 6
7 char need_mb; 7 void control_loop(void)
8 struct list_head node; 8 {
9 pthread_t tid; 9 struct lin_coefs *p;
10 } 10 struct lin_coefs Ic;
11 struct rcu_reader __thread rcu_reader; 11 double x, vy;
12 12
13 void rcu_register_thread(void) 13 rcu_register_thread();
14 14 for (;) {
15 rcu_reader.tid = pthread_self(); 15 X = measure();
16 mutex_lock(&rcu_gp_lock); 16 rcu_read_lock();
17 list_add(&rcu_reader.node, ®istry); 17 p = rcu_dereference(lin_approx_p);
18 mutex_unlock(&rcu_gp_lock); 18 Ic = *p;
19 rcu_thread_online(); 19 rcu_read_unlock();
20 } 20 y = lin_approx(x, Ic.a, lc.b, lc.c);
21 21 do_control(y);
22 void rcu_unregister_thread(void) 22 sleep_us(50);
23 { 23}
24 rcu_thread_offline(); 24 }
25 mutex_lock(&rcu_gp_lock); 25
26 list_del(&rcu_reader.node); 26 void lin_approx_loop(void)
27 mutex_unlock(&rcu_gp_lock); 27 {
28 } 28 struct lin_coefs Ic[2];
29 int cur_idx = 0;
30 struct lin_coefs *p;
Fig. 5. RCU Reader-Thread Registry 31
32 rcu_register_thread();
33 for () {
34 cur_idx = !cur_idx;
H H i . . 35 p = &lc[cur_idx];
Then3m, n(B,, — C,) implies Vi, j(A;, — D;). 20 cale. lin. approx(p);

These primitives can be expressed directly in terms o7 rcu_assign_pointer(lin_approx_p, p);
- 38 hroni ;
the upcoming C++0x standard [12]. For tremp_mb() :lye”;p(g?'ZE—'°“<)
primitive this correspondence is not exact; our memoryo }
barriers are somewhat stronger than the standard® !

atomic_thread_fence(memory_order_seq_cst)

The LOAD_SHARED() primitive maps tox.load(mem- Fig. 6. RCU Use Case: Real-Time Control

ory_order_relaxed) and STORE_SHARED() to

;.risrﬁ:i?/(em%n;cp))rsy?%rgtec:%riilf;(;ﬂ)al_fence.(::nboar;/”jro rcu_reader entry con.tains thg_ thrgad identifier returr_1ed by
order_seq_cs) . In addition, rou_dereference() - {ICRCEE L o SIS AR Bl presented i Sec-
maps to x.load(memory_order_consume) and i ?V—E Th d ybf' gld' | d b’ 51 ianal-based
rcu_assign_pointer() maps to Xx.store(v, lon - 1heneed_mb 1I€ld 1S also used by the signa-base

RCU implementation to keep track of threads which have ex-

memory_order_release) o .
Figure 5 introduces declarations and data structures useecéJted their signal handlers. Theu_thread_online()

by all implementations, along with the process-wide re istand reu_thread_offline() primitives mark the online

y all imp » along bro “WIGE T€PIS tatus of reader threads and are specific to the QSBR RCU
tracking all threads containing RCU read-side criticaktises.

) o implementation shown in Section IV-C.

The pthread mutexcu_gp_lock (lines 1-2) serializes

addition (line 17), removal (line 26) and iteration (whiclilw

be presented in Figures 8, 10, and 13) on the reader thréad@s Example RCU Use Case

(list head is at line 3 anc_;l r_10des at line 8. of Figure .5)' This Consider a real-time closed-loop control application gov-
rcu_gp_lock also serializes grace-period detection and :

. erned by a complex mathematical control law, where the

updates of the global grace-period counter. pPtieead_- .

-) . ontrol loop must execute at least every 100 microseconds.
mutex_t type is defined by the pthread library for mutuag . . . :
exclusion variables; thenutex_lock() rimitive acquires - PPOS® that this control law is too computationally expens
apothread mutex t, instance andnutef unlock() q e to be computed each time through the control loop, so a

P - — — simpler linear approximation is used instead. As enviramale

leases it. Line 11 introduces theu_reader per-thread arameters (such as temperature) slowly change, a new linea
variable, through which each access to per-thread regis?r P y g,

information is performed. These per-thread variables &re é;\b’proximation must be computed from the full mathematical

. - ..._control law. Therefore, a lower-priority task computes & se
clared via the _thread storage-class specifier, as specifie P y P

— ! f three coefficients for the linear approximation periadlig
by C99 [26], and as extended by gcc to permit cross-thread ' .
access to per-thread variabedhe tid field of struct &5 example, every five seconds. The control-loop task then

makes use of the most recently produced set of coefficients.
. o _ Of course, it is critically important that each control4no
This extension is quite common. One reason C99 does not mariste t . . f ffici Itis th

extension is to avoid prohibiting implementations that map given per- computation use a consistent set 0. Co_e icients. It is tbeze

thread variable to a single address for all threads [27]. necessary to use proper synchronization between the tontro

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 7

. . 1 #define RCU_GP_ONLINE 0x1
loop and the production of a new set of coefficients. In con-2 #define RCU GP_CTR 0x2

) - ; 3
trast, use of a slightly outdated set of coefficients is atadﬂp 4 unsigned long rcu_gp_ctr = RCU_GP_ONLINE:
We can therefore use RCU to carry out the synchronization, as _ _

shown in the (fanciful) implementation in Figure 6. The ater & static inline void reu_read_lock(void)

approach is to periodically publish a new set of coefficientss

.) : : . 9
using rcu_assign_pointer() , which are subscribed to 10 static inline void rou_read_unlock(void)
usingrcu_dereference() . Thesynchronize_rcu() 11 {

primitive is used to prevent overwriting a set of coefficent 12 }
that is still in use. Because only one thread will be updatings static inline void rcu_quiescent_state(void)

o o A S 15
the coefficients, update-side synchronization is not regiui 16 smp_mb(;

The control_loop() function is invoked from the 17 STORE_SHARED(rcu_reader.ctr,
thread performing closed-loop control. It first invokesi_- 13 amp_mb(): LOAD_SHARED(rcu_gp_ctn);
register_thread() to make itself known to RCU, and 20} -

L . e 7
then enters an infinite loop performing the real-time cdntro 2 static inline void oy thread_offine(void)

actions. Each pass through this loop first measures theotontes {

input value, then enters an RCU read-side critical section t24 smp_mb();
25 STORE_SHARED(rcu_reader.ctr, 0);

obtain the current set of coefficients, usies approx() to 263

27
compute a new control value, usés_control() tooutput 2% . iine void rou._thread]_online(void)

this value, and finally does a 50-microsecond déldihe 29 ¢

use of rcu_de_r(_afe_rence() ensures that the coefficients 32 STORE—SHAREDsgxafggikcég(rcu_gp_cm);

will be fully initialized, even on weakly ordered systemada 32 smp_mb);

the use ofcu_read_lock() andrcu_read_unlock() 33}

ensure that subsequent grace periods cannot completehntil

coefficients are completely copied. Fig. 7. RCU Read Side Using Quiescent States
The lin_approx_loop() function is invoked from the

thread that is to periodically compute a new set of coeffisien

QSBR uses these quiescent-state announcemeapptox-
imate the extent of read-side critical sections, treating the
interval between two successive announcements as a single,
I@lrge critical section. As a consequence, tha_read_-
lock() and rcu_read_unlock() primitives need do

othing and will often be inlined and optimized away, as in
Aft they are in server builds of the Linux kernel. QSBR thus

Juovides unsurpassed read-side performance, albeit abste
rcu_assign_pointer() to publish this new set, usesof longer grace periods. When Q$BR is being used to reclaim
synchronize_rcu() to wait for control_loop() to memory, these longer grace periods r_e_sult in more memory
finish using the old set, and finally waits for five second2€iNg consumed by data structures waiting for grace periods
before repeating this process. in turn resulltlng in the classic CPU-memory trqdeoff.
Becausercu_dereference() is wait-free with small ~ 1he 64-bit global countercu_gp_ctr ~ shown in Figure 7

overhead, this approach is well-suited to real-time systefa®ntains 1 in its low-order bit and contains the current grac
running on multi-core systems. In contrast, approachesdha®€'iod number in its remaining bifsit may be accessed at
on locking would requirecontrol_loop() to wait on any time by any thread but may be updated only by the thread

lin_approx_loop() when the latter was installing a new’0lding rcu_gp_lock . The rcu_quiescent_state()

set of coefficients, meaning that they might be subject fgnction simply copies a snapshot of the global counter to
priority inversion. the per-threadcu_reader.ctr variable (which may be

modified only by the corresponding thread). The 1 in the low-
C. Quiescent-State-Based Reclamation RCU order bit serves to indicate that the reader thread is not in

The QSBR RCU implementation provides near-zero reafil €xtended quiescent state. The two memory barriers enforc

side overhead, as has been presented earlier [7]. ThiS)Becﬂri\e”ng Ofl prece.dlng and §u(§)_se(|q|u9nt algcesses. .
expands on that work by describing a similar QSBR imple- S an aternatlvr(]a todperlo Ica yrlr;]svo |r:1g:uaquf|fes-
mentation for 64-bit systems. The price of minimal overheaﬁism—Stateo , threads may use threu_thread_oft-

is that each thread in an application is required to peraitjic e andrcu_thread_online() APIs to mark the
! ! pplication Is requ peret beginnings and ends of extended quiescent states. These thr

for use bycontrol_loop() . As with control_loop())
it first invokesrcu_register_thread() to make itself
known to RCU, and then enters an infinite loop performin
the coefficient calculations. To accomplish this, it defiaes
array of two sets of coefficients along with an index thatasle
which of the two sets is currently in effect. Each pass thhou
the loop computes a new set of coefficients into the elem
of the array that is not currently being used by readers, u

invoke rcu_quiescent_state() to announce that it re-
Slde_s mla qwesqe_nt S.tate' 'I.'hI'S' requirement Can_ em‘_"l.mﬁm 7If quiescent states are counted, logged, or otherwise dedorthen this
application modifications, limiting QSBR’s applicability information may be used in place of the globali_gp_ctr counter [5].

For example, context switches are counted in the Linux ksrm@SBR

SWe are arbitrarily choosing a delay half that of the real-taeadline. An implementation, and some classes of user applications aretexp® have
actual real-time application might compute the delay based asuonmg the similar operations [5, Section 3.4]. However, the separbibajrcu_gp_-
overhead of the code in the loop, or it might use timers. ctr counter permits discussion independent of any particulplicgtion.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 8

1
2
3
4
5
6
7
8

Fig.

void synchronize_rcu(void)

{

unsigned long was_online;

was_online = rcu_reader.ctr;

smp_mb();

if (was_online)
STORE_SHARED(rcu_reader.ctr, 0);

mutex_lock(&rcu_gp_lock);

update_counter_and_wait();

mutex_unlock(&rcu_gp_lock);

if (was_online)
STORE_SHARED(rcu_reader.ctr,

LOAD_SHARED(rcu_gp_ctr));
smp_mb();
}

static void update_counter_and_wait(void)

{

struct rcu_reader * index;

STORE_SHARED(rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
barrier();
list_for_each_entry(index, ®istry, node) {
while (rcu_gp_ongoing(&index->ctr))
msleep(10);
}
}

static inline int rcu_gp_ongoing(unsigned long *Ctr)
unsigned long v;

v = LOAD_SHARED¥ctr);
return v && (v != rcu_gp_ctr);

8. RCU Update Side Using Quiescent States

counter indicates that the corresponding thread might be in
a pre-existing RCU read-side critical section. It accostpis
this with the two-part check on line 35: if the counter is zero
the thread is in an extended quiescent state, while if thateou

is equal torcu_gp_ctr , the thread is in an RCU read-side
critical section that began after beginning of the curreGLR
grace period, and therefore need not be waited for.

We specify a 64-bitrcu_gp_ctr to avoid overflow.
The fundamental issue is that there is no way to copy a
value from one memory location to another atomically. Sup-
pose reader thread is preempted just before executing the
STORE_SHARED()call in rcu_thread_online() , after
the LOAD_SHARED()call has returned. Until the store takes
place the thread is still in its extended quiescent state, so
there is nothing to prevent other threads from making mieltip
calls to synchronize_rcu() (and thereby incrementing
rcu_gp_ctr) during the preemption delay. If the counter
cycles through all but one of its values, the stale valuelfinal
stored in threadI”s rcu_reader.ctr will actually be
rcu_gp_ctr ’'s next value. As a result, if another thread
later callssynchronize_rcu() afterT has entered a read-
side critical section, theapdate_counter_and_wait()
might return beford” has left this critical section, in violation
of RCU’s semantics. With 64 bits, thousands of years would be
required to overflow the counter and hence the possibility ma
be ignored. However, given a 32-bitu_gp_ctr this sce-
nario is possible; hence 32-bit implementations shoultbads
adapt the two-phase scheme discussed in Section IV-D [28].

functions must not be called from within read-side critisat-

tions. Thercu_thread_offline() function simply sets lock() and rcu_read_unlock() primitives are wait-
the per-threadcu_reader.ctr variable to zero, indicating free under the most severe conceivable definition [29]. Beea
that this thread is in an extended quiescent state. Memaryyaits for pre-existing readersynchronize_rcu() is
ordering is needed only at the beginning of the functiofiot non-blocking. Section IV-F describes how RCU updates
because the following code cannot be in a read-side critiegln support non-blocking algorithms in the same sense gs the
section. Thercu_thread_online() function is similar are supported by garbage collectors.
to rcu_quiescent_state() , except that it requires a The need for periodiccu_quiescent_state() invo-
memory barrier only at the end. Note that all the functionsations can make QSBR impossible to use in some situations,
in Figure 7 are wait-free because they each execute a fixggth as within libraries. In addition, this QSBR implementa
sequence of instructions. tion does not allow concurremstynchronize_rcu() calls
Figure 8 showsynchronize_rcu() and its two helper to share grace periods—a straightforward optimization, but
functions, update_counter_and_wait() and rcu_- beyond the scope of this paper. That said, this code can form
gp_ongoing() . Thesynchronize_rcu() function puts the basis for a production-quality RCU implementation [28]
the current thread into an extended quiescent state if it isAnother limitation of the quiescent-state approach is that
not already in one, forces ordering of the caller's accessegplications requiring read-side critical sections imsighan-
and invokesupdate_counter_and_wait() under the dlers must disable signals around invocatiomaf_quies-
protection of rcu_gp_lock . The update_counter_- cent_state() , and for the duration of extended quiescent
and_wait() function increments the globatu_gp_ctr states marked bycu_thread_offline() and rcu_-
variable by 2 (recall that the lower bit is reserved for r@adethread_online() . In addition, applications needing to
to indicate whether they are in an extended quiescent statayoke synchronize_rcu() while holding a lock must en-
It then useslist_for_each_entry() to scan all of sure that all acquisitions of that lock invokeu_thread_-
the threads, invokingcu_gp_ongoing() on each, thus offline() , presumably via a wrapper function encapsulat-
waiting until all threads have exited any pre-existing RClihg the lock-acquisition primitive. Applications needingad-
read-side critical sections. THoarrier() macro on line 23 side critical sections within signal handlers or that need t
prevents the compiler from checking the threads before upvoke synchronize_rcu() while holding a lock might
dating rcu_gp_ctr , which could result in deadlock. Thetherefore be better served by the RCU implementations de-
msleep() function on line 26 blocks for the specified numscribed in subsequent sections.
ber of milliseconds, in this case chosen arbitrarily. Rindhe A semi-formal verification that this implementation sagsfi
rcu_gp_ongoing() function checks to see if the specifiedhe grace-period guarantee (in the absence of overflow) is

Given that they are empty functions, theu_read_-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 9

1 #define RCU_GP_CTR_PHASE 0x10000 1 void synchronize_rcu(void)
2 #define RCU_NEST_MASK OXOffff 2 {
3 #define RCU_NEST_COUNT 0x1 3 smp_mb();
4 4 mutex_lock(&rcu_gp_lock);
5 unsigned long rcu_gp_ctr = RCU_NEST_COUNT; 5 update_counter_and_wait();
6 6 barrier()
7 static inline void rcu_read_lock(void) 7 update_counter_and_wait();
8 { 8 mutex_unlock(&rcu_gp_lock);
9 unsigned long tmp; 9 smp_mb();
10 10 }
11 tmp = rcu_reader.ctr; 11
12 if (I(tmp & RCU_NEST_MASK)) { 12 static void update_counter_and_wait(void)
13 STORE_SHARED(rcu_reader.ctr, 13 {
14 LOAD_SHARED(rcu_gp_ctr)); 14 struct rcu_reader *index;
15 smp_mb(); 15
16 } else { 16 STORE_SHARED(rcu_gp_ctr,
17 STORE_SHARED(rcu_reader.ctr, tmp + RCU_NEST_COUNT); 17 rcu_gp_ctr ©~ RCU_GP_CTR_PHASE);
18 } 18 barrier();
19 } 19 list_for_each_entry(index, ®istry, node) {
20 20 while (rcu_gp_ongoing(&index->ctr))
21 static inline void rcu_read_unlock(void) 21 msleep(10);
22 { 22
23 smp_mb(); 23 }
24 STORE_SHARED(rcu_reader.ctr, 24
25 rcu_reader.ctr - RCU_NEST_COUNT); 25 static inline int rcu_gp_ongoing(unsigned long * Ctr)
26 } 26
27 unsigned long v;
28
Fig. 9. RCU Read Side Using Memory Barriers 29 v = LOAD_SHAREDfctr);
30 return (v & RCU_NEST_MASK) &&
31 ((v ~ rcu_gp_ctr) & RCU_GP_CTR_PHASE);
32}

presented in Appendix A.
The next section discusses an RCU implementation thatrig. 10. RCU Update Side Using Memory Barriers
safe for use in libraries, the tradeoff being higher reatt-si
overhead.
order bit RCU_GP_CTR_PHAS$Eso there is ample room to
store the nesting level.
The rcu_read_lock() function first checks the per-
The general-purpose RCU implementation can be usedtitead nesting level to see if the calling thread was prestjou
any software enVironment, inCiUding iibrary functionstthee in a quiescent State, Snapshotting the g|amj_gp_ctr
not aware of the deSign of the Calling application. SUCi’B.iiyr grace_period phase number [30] and executing a memory
functions cannot guarantee that each application’s tisreall parrier if it was, and otherwise simply incrementing thetimes

D. General-Purpose RCU

invoke rcu_quiescent_state() sufficiently often, nor |evel without changing the phase number. The low-orderddits
can they ensure that threads will invokeu_thread_- rcu_gp_ctr are permanently set to show a nesting level of
offline() and rcu_thread_online() around each 1 so that the snapshot can store both the current phase numbe
blocking system call. General-purpose RCU therefore does Rind the initial nesting level in a single atomic operatiohe T
require that these three functions ever be invoked. memory barrier ensures that the storeda_reader.ctr

In addition, this general-purpose implementation avoidgill be ordered before any access in the subsequent RCU
the counter-overflow problem discussed in Section IV-C yad-side critical section. Theu_read_unlock() func-

using a different approach to track grace periods. Eachegrafn executes a memory barrier and decrements the nesting
period is divided into twograce-period phasesand instead |evel. The memory barrier ensures that any access in the
of a free-running grace-period counter, a single-bit teggl prior RCU read-side critical section is ordered before the
used to number the phases within a grace period. A givRBsting-level decremeft.Even with the memory barriers,
phase completes only after each thread'’s local snapsth@treithoth rcu_read_lock() andrcu_read_unlock() are
contains a copy of the phase’s number or indicates the threggit-free with maximum overhead smaller than many other
isin a quiescent state. If RCU read-side critical sectiams %ynchronization primitives_ Because they may be imp|emnt

finite in duration, one of these two cases must eventuallyl hdds empty functionsrcu_quiescent_state() , rcu_-

for each thread. thread_offline() , and rcu_thread_online() are
Because reader threads snapshot the valueuofgp_ctr omitted.

whenever they enter an outermost read-side critical s&ctio Figure 10 showssynchronize_rcu() and its two

eXpliCit traCking of critical-section neSting is requil’dﬂevel’- helper functionS, update_counter_and_wait() and

theieSS, the extra read-side overhead is Significantiytm rcu_gp_ongoing() . The Synchronize_rcu() func-

a single compare-and-swap operation on most hardware, anga forces ordering of the caller's accesses (lines 3 and 9)
beneficial side effect is that all quiescent states are@fidg and waits for two grace-period phases under the protection

extended quiescent states. Read-side Critical-sectisﬁingds of rcu ap lock , as discussed earlier. The two phases are
tracked in the lower-order bitRCU_NEST_MASKf the per- T

thread rcu_reaQer.ctr variable, as _ShOWﬂ in Figure 9_' 8In C++0x, the weakerstore(memory_order_release) barrier
The grace-period phase number occupies only a single higlwuld suffice, but it is not supported by gcc.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 10

. . static inline void rcu_read_lock(void)
separated by darrier() to prevent the compiler from {
interleaving their accesses, which could result in stéowat unsigned long tmp;
The update_counter_and_wait() function is invoked tmp = rcu_reader.ctr;

if (I(tmp & RCU_NEST_MASK)) {
STORE_SHARED(rcu_reader.ctr,
LOAD_SHARED(rcu_gp_ctr));

to handle each grace-period phase. This function is sirtolar
its counterpart in Figure 8, the only difference being thwes t
update tacu_gp_ctr toggles the phase number rather thanlo } elee |
incrementing a counter. Threeu_gp_ongoing() function 11 STORE_SHARED(rcu_reader.ctr, tmp + RCU_NEST_COUNT);
is likewise similar to its earlier counterpart; it tests e 12) 4

the specified snapshot indicates that the correspondiegdhr 14

is in a non-quiescent state (the nesting level is nonzerd}p statc infine void reu_read unlock(vod)

with a phase number different from the current value iz = barrier(;
rcu gp ctr . 18 STORE_SHARED(rcu_reader.ctr,

. . . 19 der. - RCU_NEST_COUNT);
To show why this works, let us verify that this two-phasezo 3 reureader.ct -)

approach properly obeys RCU’s semantics, i.e., that ary-rea

side critical section in progress wheynchronize_rcu() Fig. 11. RCU Read Side Using Signals
begins will terminate before it ends. Suppose thréad in a

read-side critical section. Until the critical sectionngnates, 7 void synchronize_rcu(void)

T's rcu_reader.ctr will show a nonzero nesting level, 3~ mutex_lock(&rcu_gp_lock):

and its snapshot of the phase number will not change (sincg Logggt—emg—)j:t—;?'Zﬁgs(v)v;aito_

©oO~NOUAWNRF

barrier();

the phase number irtu_reader.ctr changes only during 6 barrier();

an outermostcu_read_lock() call). The invocation of 7 update_counter_and wait();
— - . g 8 force_mb_all_threads();

update_counter_and_wait() during one ofsynch- 9 mutex_unlock(&rcu_gp_lock);

ronize_rcu() s grace-period phases will wait unti"s 10}

phase-number snapshot takes on the value 0, whereas the

invocation during the other phase will wait until the phasdZ9- 12. RCU Update Side Using Signals
number snapshot takes on the value 1. Each of the two
invocations will also complete iff’s nesting level takes on
the value 0. But regardless of how this works out, it is clearl
impossible for both phases to end befdrs read-side critical ~ The extra overhead of a second grace-period phase is not
section has terminated. Appendix B presents a semi-forniagarded as a serious drawback since it affects only ugjater

violation of RCU’s semantics.

verification of this reasoning. not readers. The overhead of the read-side memory barriers
A natural question is “Why doesn’t a single grace-periots more worrisome; the next section shows how it can be
phase suffice?” Ifsynchronize_rcu() used a single eliminated.

phase then it would be essentially the same as the function
in Figure 8, and it would be subject to the same overflo

problem, exacerbated by the use of what is effectively deing\azl' Low-Overhead RCU Via Signal Handling

bit counter. In more detail, the following could occur: On common multiprocessor hardware, the largest source of
1) ThreadT invokes rcu_read_lock() , fetching the read-side overhead for general-purpose RCU is the memory
value ofrcu_gp_ctr , but not yet storing it. barriers. One novel way to eliminate these barriers is ta sen
2) ThreadU invokes synchronize_rcu() , including POSIX signals from the update-side primitives. An unexpect
invoking update_counter_and_wait() , where it but quite pleasant surprise is that this approach results in
toggles the grace-period phase numbencin gp_ctr relatively simple read-side primitives. In contrast, thosf
so that the phase number is now 1. older versions of the Linux kernel's preemptible RCU were
3) Because no thread is yet in an RCU read-side crittotoriously complex [31].
cal section, thread completesupdate_counter_- The read-side primitives shown in Figure 11 are identical
and_wait() and returns tesynchronize_rcu() , to those in Figure 9, except that lines 9 and 17 replace the
which returns to its caller since it uses only one phasmemory barriers with compiler directives that suppresseeod
4) ThreadT now stores the old value atu_gp ctr , motion optimizations. The structures, variables, and tors
with its phase-number snapshot of 0, and proceeds iritte identical to those in Figures 5 and 9. As with the previous
its read-side critical section. two implementations, bottcu_read_lock() andrcu_-
5) ThreadU invokessynchronize_rcu() once more, read_unlock() are wait-free.
again toggling the global grace-period phase number, soThe synchronize_rcu() primitive shown in Figure 12
that the number is again 0. is similar to that in Figure 10, the only changes being in
6) When Thread/ examines Thread’s rcu_reader.- lines 3—4 and 8-9. Instead of executing a memory barrier
ctr variable, it finds that the phase number in the snappcal to the current thread, this implementation forces all
shot matches that of the global variabtei_gp_ctr . threads to execute a memory barrier usiiogce_mb_-
ThreadU therefore exits fronsynchronize_rcu() . all_threads() , and the two calls to this new function are

7) But ThreadT is still in its read-side critical section, in moved inside the locked region because of the need to iterate

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 11

tatic void force_mb_all_threads(void) void call_rcu(struct rcu_head * head,

5
{ void (*func)(struct rcu_head * head))
struct rcu_reader *index;
head->next = NULL;
STORE_SHARED(index->need_mb, 1); enqueue(head, &rcu_data);

1
2
3
4 head->func = func;
5 _
6
smp_mb(); 7

1
2
3
4
5 list_for_each_entry(index, ®istry, node) {
6
7 }
8 pthread_kill(index->tid, SIGRCU);

9

void call_rcu_cleanup(void)

}
10 list_for_each_entry(index, ®istry, node) {

8

9

10 {
11 while (LOAD_SHARED(index->need_mb)) 11 struct rcu_head * next;
12 msleep(1); 12 struct rcu_head * wait;
13} 13
14 smp_mb(); 14 for (;) {
15 } 15 wait = dequeue_all(&rcu_data);
16 16 if (wait) {
17 static void sigurcu_handler(int signo, 17 synchronize_rcu();
18 siginfo_t * siginfo, 18 while (wait) {
19 void * context) 19 next = wait->next;
20 { 20 wait->func(wait);
21 smp_mb(); 21 wait = next;
22 STORE_SHARED(rcu_reader.need_mb, 0); 22 }
23 smp_mb(); 23 }
24 } 24 msleep(1);

Fig. 13. RCU Signal Handling for Updates
Fig. 14. Avoiding Update-Side Blocking by RCU

over the thread registry, which is protected mu_gp_-

lock . The update_counter_and_wait() andrcu_- The signal handler runs in the context of a reader thread

gp_ongoing() routines are identical to those in Figure 10n response to the signal sent in line 8. Tlsigurcu_-

and are therefore omitted. handler() function executes a pair of memory barriers
Figure 13 shows the signal-handling functiofosce - enclosing an assignment of iteed_mb per-thread variable

mb_all_threads() and sigurcu_handler() 9 Of to zero. The effect is to place a full memory barrier at the

course, these signals must be used carefully to avoid gint in the receiver's code that was interrupted by theadign

stroying the readers’ wait-free properties, hence theakesi preventing the CPU from reordering memory references acros

tion of synchronize_rcu() . With simple batching tech- that point.

niques, concurrent invocations afynchronize_rcu() A proof of correctness for this implementation is the

could share a single RCU grace period. subject of another paper [23]. Of course, as with the other
The force_mb_all_threads() function is invoked two RCU implementations, this implementatiosgnchro-

from synchronize_rcu() . It ensures a memory barrier isnize_rcu() primitive is blocking. The next section shows

executed on each running thread by sending a POSIX sigAalvay to provide non-blocking RCU updates.

to all threads and then waiting for each to respond. As shown

in Appendix C, this has the effect of promoting compilerF. Non-Blocking RCU Updates

ordering directives such abarrier() to full memory Although some algorithms use RCU as a first-class tech-

barriers, while allowing reader threads to avoid the oved® nique, RCU is often used only to defer memory reclamation. In

memory barriers when they are not needed. An initial iterati these situations, given sufficient memosynchronize_-

over all threads sets eadteed_mb per-thread variable to rcu() need not block the update itself, just as automatic

1, ensures that this assignment will be seen by the siggairbage collectors need not block non-blocking algorithms

handler, and sends a POSIX signal. A second iteration thgRe functions detailed here can be used to perform batched

rescans the threads, waiting until each one has respongediU callback execution, allowing multiple callbacks to exe

by setting itsneed_mb per-thread variable back to ze¥d. cute after a grace period has passed.

Because some versions of some operating systems can losene way of accomplishing this is shown in Figure 14, which

signals, a production-quality implementation will resethe implements the asynchronousll_rcu() primitive found

signal if a response is not received in a timely fashion. IRina in the Linux kernel. The function initializes an RCU callliac

there is a memory barrier to ensure that the signals have be@ficture and uses a non-blocking enqueue algorithm [32]

received and acknowledged before later operations thattmigo add the callback to thecu data list. Given that the

otherwise destructively interfere with readers. call_rcu() function contains but two simple (and therefore
wait-free) assignment statements and an invocation of the
9Some operating systems provide a facility to flush CPU writdesffor non-blockingenqueue() function, call_rcu() is clearly
all running threads in a given process. Such a facility, whevailable, can non-blocking Systems providing an a_tomic swap instrurctio

replace the signals.

10The thread-list scans here and in Figures 8 and 10 are pedtbgtcu_- a0l implemenF a wait-freeall_rcu() via the wait-free
gp_lock . Since the thread-registry list is read-mostly (it is updatmly ~enqueue algorithm used by some queued locks [33].
by rcu_register_thread() andrcu_unregister_thread()), it A separate thread would remove and invoke these callbacks

would appear to be a good candidate for RCU protection. Eserfor the ft. iod h | d b linadake
reader: Determine what changes to the implementation wouldebded to &1L€M & grace period has elapsed, by callingdake_rcu_-

carry this out. cleanup shown in Figure 14. On each pass through the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 12

main loop, the function uses a (possibly blocking) dequeue 9+09 ' ' 0SBR '
algorithm to remove all elements from theu_data list en 8e+09 | Con et R 1
masse. If any elements were present, it waits for a gracegeri £ 7e+oo Pe;{ﬂ;ggg mutex o P
to elapse and then invokes all the RCU callbacks dequeued 6e+09 pthread reader-writer lock ---o-- %xxxxxxx 1
from the list. Finally, line 24 blocks for a short period to % 5e+09 %M*XX .
allow additional RCU callbacks to be enqueued. The Ionger% 4e+09 1
line 24 waits, the more RCU callbacks will accumulate on the § se.09 1
rcu_data list; this is a classic memory/CPU trade-off, with § 26409]
longer waits allowing more memory to be occupied by RCU o |
callbacks but decreasing the per-callback CPU overhead. o L s

Of course, the use ofynchronize_rcu() causes 0 10 20 30 40 50 60 70

Number of cores

call_rcu_cleanup() to be blocking, so it should be
invoked in a separate thread from the updaters. Howevémw®if frig 15 Read-Side Scalability of Various Synchronizafsmitives, 64-core
synchronization mechanism used to coordinate RCU upda&sVvERS+

is non-blocking then the updater code paths will execute

two non-blocking code sequences in succession (the update

and call_rcu()), and will therefore themselves be non-ransactional Memory) [38, 39, 40] is likely to be more
blocking. scalable than STM; unfortunately, no system supporting HTM

was available for this study.

V. EXPERIMENTAL RESULTS

This section presents benchmarks comparing the RCAU Read-Side Scalability
mechanisms described in this paper to each other, to pthreaffigure 15 presents a read-side scalability comparisoneof th
mutexes, to pthread reader-writer locks, and to per-threR€U mechanisms and the locking primitives on the PowerPC.
mutexes. The per-thread mutex approach uses one mutex Hee goal of this test is to measure each synchronization
reader thread so that updater threads take all the mutexeshnique’s performance in read-only scenarios, varyheg t
always in the same order, to exclude all readers. This approsaumber of CPUs. Each test ran on between 1 and 64 readers
ensures reader cache locality at the expense of slower-wriier 10 seconds, each taking a read lock, reading one vayiable
side locking [34]. Section V-A examines read-side scaighil then releasing the lock in a tight loop with no updater. The
Section V-B discusses the effect on the read-side prinsitivigure shows that RCU and per-thread mutexes achieve linear
of varying the critical-section duration, Section V-C mrets scalability, courtesy of the perfect memory locality ated
the impact of updates on read-side performance, and finaly these approaches. QSBR is fastest, followed by signal-
Section V-D compares update-side throughput. The goal isltased RCU, general-purpose RCU and per-thread mutex, each
identify clearly the situations in which RCU outperform®thadding a constant per-CPU overhead. The Xeon behaves
classic locking solutions found in existing applications. similarly and is not shown here.

The machines used to run the benchmarks are an 8-cor@&ote that the performance of the QSBR and the signal-
Intel Core2 Xeon E5405 clocked at 2.0 GHz and a 64-cobased-RCU implementations are more than an order of mag-
IBM PowerPC POWERS5+ clocked at 1.9 GHz. Each core ofitude greater than that of the per-thread mutex. Becawse th
the PowerPC machine has 2 hardware threads. To eliminpgformance of the per-thread mutex corresponds to that of
hardware-thread-level contention for per-core resourees perfect-locality uncontended locking, these two variaots
run our benchmarks using only one hardware thread on e&®8U are therefore more than an order of magnitude faster than
of the 64 cores. uncontended locking. Even the slower general-purpose RCU

The mutex and reader-writer lock implementations used fomplementation is more than twice as fast as uncontended
comparison are the standard pthread implementations frem tocking, making use of RCU extremely attractive for read-
GNU C Library 2.7 for 64-bit Intel and GNU C Library 2.5 mostly data structures.
for 64-bit PowerPC. In Figure 15, the traces for pthread mutex and pthread

STM (Software Transactional Memory) is not includedeader-writer locking cannot be easily distinguished fribra
in these comparisons because the jury is still out on STkaxis. Figure 16 therefore displays only these two traces,
practicality [35]. STM treats concurrent reads and writethe showing their well-known negative scalability.
same variable as conflicts, requiring frequent conflict kkec
in turn degrading reader performance and scalability. Im-co . - . .
trast, Figures 20, 21, 22, and 23 will show that RCU’s nor: R€ad-Side Critical Section Duration
conflicting concurrent reads and writes minimize read over- Figure 17 presents the number of reads per second as
head while maintaining extremely high read scalabilityerev a function of the duration in nanoseconds of the read-side
in the presence of heavy write workloads. Researchers haviical sections. This benchmark is performed with 8 reade
improved STM’s read-side performance and scalability [36fhreads acquiring the read lock, reading the data structure
albeit in some cases by placing the burden of instrumemtatibusy-waiting for the appropriate delay, and releasing tio&.|
and privatization on the developer [37]. HTM (Hardward&here is no active updater.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010

9e+06

pthréad mutex ——

1e+09

13

T T

QSBR ——

e} <
5 8e+06 I pthread reader-writer lock --->—]| kK Signal-based RCU ---x-—
o T7e+06 1 le+08 F o ooq General-purpose RCU - 7
2 6et06 | B Per-thread mutex &
& 3 1e+07 F pthread reader-writer lock ——=-—-]
8 5e+06 [1 o pthread mutex ---o--
= 4e+06 1 7 Ao .
o 3et06 1 :’@ e sonn]
sgn 2e+06 1 5 100000 | b
2 1le+06 q g
| . | | h h g 10000 L 1
0 10 20 30 40 50 60 70 3
Number of cores 1000 F o]
o,
"o
Fig. 16. Read-Side Scalability of Mutex and Reader-Writeck,d64-core 100
POWERS+ 0.1 1 10 100 1000 10000 100000 1e+06
Read-side C.S. length (in nanoseconds)
16409 p== e j j j 'QSBR —— Fig. 18. Impact of Read-Side Critical Section Length, 8 Reddweads on
1e+08 8 Signal-based RCU - 64-core POWERS5+, Logarithmic Scale
General-purpose RCU -+
2 Per-thread mutex o
3 1e+07 P pthread reader-writer lock -—-=-- 7
9] prerlogonog g pthread mutex ----o-- 1le+10 = T T T T T
2 1e+06 - B R 4 TRy . QSBR —+—
% °~s,®‘8 10+09 k¥ xeox p Signal-based RCU --->x-— |
o 100000 ¢) q - BB BB g General-purpose RCU ----x----
- c Per-thread mutex --&
S 10000 L 1 g let08 ¢ thread reader-writer lock ——=—-
@ o pthread mutex ---o--
£ 1000 2 le+07 |]
2 [. 7 3 bogogog-@-a
z Sa § 1e+06 | i*“f&:;—-».-.,.,,{,]
100 ¢ o 4 g o,
10 | | | | | | | _cg 100000 ¢ Poma o 1
1 10 100 1000 10000 100000 1le+06 1e+07 1e+08 g 10000 F ‘S‘On 1
Read-side C.S. length (in nanoseconds) z e
1000 F o o
To
Fig. 17. Impact of Read-Side Critical Section Length on 8scieon, 100
Logarithmic Scale 0.1 1 10 100 1000 10000 100000 1e+06

Read-side C.S. length (in nanoseconds)

. . Fig. 19. Impact of Read-Side Critical Section Length, 64 Reathreads
The number of reads per second is inversely propoonr‘@ﬁ’64_00re POWERS+, Logarithmic Scale

to the sum of the overheads of the read-side primitives and
the duration of the read-side critical section. As the caiti
section duration increases, the number of reads per secggHemes are about 10 times larger when running on 64 cores
asymptotically approaches the inverse of this duratiore Tkhan on 8 cores (curves near their asymptotes at 10,000 and
logarithmic axes of Figures 17-19 therefore cause the slop&00 nanoseconds instead of 1000 and 250 respectivelyy. Thi
of the curves to approach1. The region where each curveeffect is caused by interprocessor cache-line-exchanggsie
nears its asymptote is closely related to the overhead of #a&d nonlinear scaling of lock-contention times. By cortiras
corresponding read-side mechanism. the read-side overheads of the RCU and per-thread mutex
Thus on the Xeon, QSBR and signal-based RCU have readhemes are independent of the number of CPUs, and on this
side locking overheads at least a factor of 5 better thanrgene machine, the difference in overhead between these schames i
purpose RCU, which in turn is about a factor of 2 better thaegligible for critical sections longer than 250 nanoseison
per-thread mutexes, which in turn is about a factor of 20ebett Two interesting features of the pthread reader-writer lock
than reader-writer locks (the curves near their asymptotgsce in Figures 17, 18, and 19 deserve explanation. The first
at 50, 250, 500, and 10,000 nanoseconds respectively). fthat the performance of pthread reader-writer locking is
read-side critical sections longer than 1000 nanosecahds, inferior to that of pthread mutex for small read-side catic
difference in overhead between RCU and per-thread mutexggtion lengths, which is due to the slightly higher ovethea
is negligible. The pthread mutex asymptote is lower than thg reader-writer locking compared to that of pthread mugex’
others, because the single mutex can be held by only asélusive locking. The second is the slight rise in throughp
reader at a time. for reader-writer locking just prior to joining the asymisp
Corresponding curves for the POWERS+ machine appeghich is due to decreased memory contention on the data
in Figures 18 and 19. The difference between them is th&ttucture implementing the reader-writer lock.
Figure 19 uses 64 reader threads and 64 cores, whereas
Figure 18 uses only 8 threads bound to 8 cores spaced with a
stride of 8. Cores close to each other share a common L2 dnd
L3 cache on the POWERS5+, which causes reader-writer lockThe results in Sections V-A and V-B clearly show RCU’s
and pthread mutex to be slightly faster at lower stride \&lueead-side performance advantages. However, RCU updates ca
(not shown). This has no significant effect on our results. incur performance penalties due to the overhead of grace
Comparing Figures 18 and 19 shows that the read-sideriods and the resulting decreases in locality of referenc
overheads of both the reader-writer lock and the pthrea@xnufThis section therefore measures these performance pnalti

Effects of Updates on Read-Side Performance

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 14

le+10 T T T T T T le+10 T T T T T T T T
le+09 £ ek ¥ E
K KK KK K KKK K KKK K K le+09 ¢ LRSS - —aalD 3
é le+08 F GG BB B B B B BB B B g *%"ﬁk I § e
o % © & Loge o} 5
g 1e+07 £] o} 52
« ©-9-90 o0 o-o € 1e+08 | X 3
16406 R el Ee g TR0 TR 5 S g2 O CooTm 1 %
al
100000 Y B
1 10 100 1000 10000 100000 1le+06 1e+07 1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09
Updates/s Updates/s
QSBR —+— Ideal QSBR —+—
Signal-based RCU ---»--- Ideal Signal-based RCU ------
General-purpose RCU - Ideal General-purpose RCU ----%----
Per-thread mutex & QSBR &
pthread reader-writer lock ——=-- Signal-based RCU --=--
pthread mutex ---o--- General-purpose RCU --o--
Fig. 20. Update Overhead, 8-core Intel Xeon, Logarithmicl&ca Fig. 22. Comparison of Pointer Exchange and Ideal RCU Updath@ad,
8-core Intel Xeon, Logarithmic Scale
le+10 T T T T T
e 1e+10 - - - T T T
le+09 B R ¥ j&{ o
» e e = * ®
% le+08 m * 7 » le+09 ; E
% L™ B 5“5;4,,“““5“5“5“@7:5——,g;—;ﬁ——*ﬁx——x———x——%——*—m%
& 1e+07 | 1 § © Yy
@ L \ J
R s le+08 9%
100000 L L L L L
1 10 100 1000 10000 100000 1e+06 1le+07 2 L . L L L
Updates/s 100 1000 10000 100000 1e+06 1e+07 1e+08 1le+09
Updates/s
QSBR —+—
Signal-based RCU --->--- Ideal QSBR —+——
General-purpose RCU -+~ Ideal Signal-based RCU ------
Per-thread mutex & Ideal General-purpose RCU -
pthread reader-writer lock —-=--- QSBR 8
pthread mutex ---e--- Signal-based RCU --=--

General-purpose RCU ---o--

Fig. 21. Update Overhead, 64-core POWERS5+, Logarithmic Scale . . .
Fig. 23. Comparison of Pointer Exchange and Ideal RCU Updatgt@ad,

64-core POWERS5+, Logarithmic Scale

Figure 20 presents the impact of update frequency on read-
side performance for the various locking primitives on theventually suffers from reader starvation.
Intel Xeon. It is performed by running 4 reader and 4 updater The RCU read-side performance shown in Figures 20
threads and varying the delay between updates. The updatgtg 21 trails off at high update rates. In principle this coog
for the per-thread mutex, mutex and reader-writer lock exaused either by the overhead of quiescent-state detemtion
periments store two different integer values successitely the write side or by cache interference resulting from thia da
the same variable. Readers accessing the variable twide wipbinter exchanges. To determine the cause, we defined ideal
holding a lock are guaranteed to observe a single, unchan@@u performance to include only the overheads of the grace
value. To provide the same effect, the RCU updaters allocgieriods, and compared this ideal performance to that shown i
a new structure, store an integer in this newly allocatete earlier figures. We generated the ideal RCU workload by
structure, and then atomically exchange the pointer to themoving the memory allocation and pointer exchanges from
new structure with the old pointer currently being accessee update-side, but we kept theu_defer() mechanism
by readers. The RCU experiments store only a single intedgerorder to take into account the overhead of waiting for guie
value in each structure; we verified that successively regoricent states. Figures 22 and 23 present the resulting casopari
two values to the same memory location had no significagiearly showing that the non-linear read-side performaisce
impact on performance. Memory reclamation is batched usiogused by the pointer exchanges rather than the grace geriod
an rcu_defer() mechanism; this mechanism uses fixed- Figures 24 and 25 present the impact of the update-side
size per-thread queues to hold memory reclamation regsestgritical-section length on read-side performance. Thestst
that an updater incurs a grace period no more than once every performed with 4 reader and 4 writer threads on the Xeon,
4096 updates. A grace period is of course required whenewgrd with 32 reader and 32 writer threads on the POWER5+.
an updater finds its queue is full. In addition, a separat&kevor Readers run as quickly as possible, with no delay between
thread empties the queues every 100 milliseconds to previdereads. Writer iterations are separated by an arbitrarilgesi
upper bound for reclamation delay. Figure 21 shows the resdélay consisting of 10 iterations of a busy loop, amounting
of this same benchmark running on a 64-core POWERS+, wiith 55 nanoseconds for the Intel Xeon (due to the “rep; nop”
32 reader and 32 updater threads. instruction recommended for x86 busy-waiting loops) and

Interestingly, on such a workload with 4 tight-loop reader2.0 nanoseconds for the POWERS5+.
mutexes uniformly outperform reader-writer locking. Fnt With RCU approaches, the read-side performance is largely
more, this particular implementation of reader-writerkiog unaffected by updates. Slight variations can be seen omarlin

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 15

ler1o T ' ' ' ' ' RCU readers do not block RCU writers. Furthermore, although
1e+08 - waiting for an RCU grace period can incur significant latency
it does not necessarily degrade updater bandwidth because i

le+07
1le+06 F-9
100000

10000 ' production-quality implementations, RCU grace periods ca
100 ey overlap in time.
10 - e n L

Number of reads / second

o
‘W fal

o
L

T T T T T T T
o

N SN LN
e N .
. '3‘%’ o-%

In Figure 21, the mutex-based benchmark performance
o 100 1000 10000 100000 1e+06 le+07 le+08 starts degrading at 30,000 updates per second with 32 up-

1 10
Write-side C.S. length (in nanoseconds) dater threads, while RCU easily exceeds 100,000 updates
Signal-bases . per sgcond. These r_esults clearly show the need to partition
General-purpose RCU - data in order to attain good performance on larger systems.
pthread reader-writer lock --=- - Benchmarks running only 4 updater threads on the 64-core

pthread mutex ---o---

system show similar effects (data not presented). Figure 20
Fig. 24. Impact of Update-Side Critical Section Length ondR&de, 8-core shows that update overhead remains reasonably constant eve
Intel Xeon, Logarithmic Scale at higher update frequency for 4 updater threads on the Xeon.
Therefore, as the number of concurrent updaters increases,
mutex behavior seems to depend on the architecture and on
the specific GNU C Library version.

In Figure 21, the reader-writer lock attains only 175 upslate
per second, indicating that updaters are starved by readers
Per-thread locks attain only 10,000 updates per seconds, Thu
locking significantly limits update rate relative to RCU.

These results show that RCU QSBR and general-purpose

le+10 T T T T T
1le+09
1e+08
1le+07
1le+06
100000
10000
1000
100
10
1 L L L L

—
e e B B B -—m——m—-ﬁamm--ﬁ~—m——m——ﬁ——ﬁ——é——ﬁ———x——'*”*
Beg
R A B B it B
\

i
o s | i

a

(S k
i

! i
i

T T T T T T
T T T T R R

Number of reads / second

Vi
!

o._ & i/
o o-#-0-0-#

0.1 1 10 100 1000 10000 100000 1e+06) . .
Write-side C.S. length (in nanoseconds) RCU attain the highest update rates for partitionable read-
_ QSBR —+— mostly data structures (where “read mostly” means more than
o omanes RGU 90% of accesses are reads) even compared to uncontended
othread e ater ook o locking. This is attributed to the lower performance ovewhe

pthread mutex o~ for exchanging a pointer compared to the multiple atomic
operations and memory barriers implied by acquiring and

Fig. 25. Impact of Update-Side Critical Section Length on dR&8&e, 64- pl . lock y . P y qf 9
core POWERS5+, Logarithmic Scale releasing a lock. RCU is sometimes used even for update-

heavy workloads, due to the wait-free and deadlock-immune
properties of its read-side primitives. The performancarch
scale (not shown here), but these are caused primarily by CReferistics of RCU for update-heavy workloads have been
affinity of readers and writers, which influences the shadhg presented elsewhere [41].
caches.
Unlike RCU, per-thread mutex readers are significantly VI. CONCLUSIONS
impacted by long write-side critical sections. Again refer We have presented a set of RCU implementations covering a
ring to Figures 24 and 25, read-side performance degrasége spectrum of application architectures. QSBR shows the
significantly beyond a write-side critical-section length best performance characteristics, but severely constiidia
5,000 nanoseconds on both the Xeon and the POWERS5+. @aplication architecture by requiring that each readeeattir
the Xeon, the pthread reader-writer lock and pthread mutpgriodically announce that it is in a quiescent state. User-
degrade catastrophically starting at 250 to 750 nanosscofgiel QSBR imposes two additional requirements: (1) ani loc
write-side critical-section length. In addition, theséhames that is held across a grace period must be acquired within an
show signs of starvation in the presence of long write-sidixtended quiescent state, and (2) if the handler for a given
critical sections. We saw instances of both reader stanvatisignal contains RCU read-side critical sections, thenstmtal
(the dips in Figure 25) and writer starvation (not shown)nust be disabled across all extended quiescent states. Inte
apparently the class which owns the lock first (either remdegstingly enough, kernel-level QSBR implementations avoid
or writers) tends to keep it for the whole test duration. Thihiese two requirements because of QSBR’s integration with
is likely caused by the brevity of the delays between reatfe scheduler and interrupt handlers.
and updates, which favors the previous lock owner due toSignal-based RCU performs almost as well as QSBR, but
unfairness in the pthread implementations. requires reserving a POSIX signal. Unlike the other two,
general-purpose RCU incurs significant read-side overhead
However it minimizes constraints on application architeet
D. Update Throughput requiring only that each thread invokes an initializatiomd-
Maximum update rates can be inferred from the X-axis dion before entering its first RCU read-side critical settio
Figures 20 and 21 by selecting the rightmost point of a givenBenchmarks demonstrate linear read-side scalability of
trace. For example, Figure 20 shows that RCU attains 2 millicRCU and per-thread locking. They also show that there is
updates per second, while per-thread locks manages but &.tead-side critical-section duration beyond which reader
million updates per second. A key reason for this resultas thwriter locking, RCU, and per-thread locking perform simia

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010

16

and that this duration increases with the number of coreg7] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole,
These benchmarks also show that by performing grace-period “Performance of memory reclamation for lockless syn-
detection in batch, RCU attains better update rates thaterea
writer locking, per-thread locking, and exclusive locking

read-mostly data structures. It is possible to further elese

chronization,” J. Parallel Distrib. Comput. vol. 67,
no. 12, pp. 1270-1285, 2007.

[8] K. A. Fraser, “Practical lock-freedom,” Ph.D. disserta

RCU update-side overhead by designing data structures pro- tion, King's College, University of Cambridge, 2003.

viding good update cache locality.

[9]

ACKNOWLEDGEMENTS

Alexandre Desnoyers, Michael Stumm, Balaji Rao, Tom Hart,
Robert Bauer, Dmitriy V’jukov, and the anonymous reviewers
for many helpful suggestions. We are indebted to the Linux

community for their use of and contributions to RCU an

to Linus Torvalds for sharing his kernel with us all. We are
grateful to Kathy Bennett for her support of this effort.

This material is based upon work supported by the Nation[z_aLIZ]

Science Foundation under Grant No. CNS-0719851. This
work is funded by Google, Natural Sciences and Engineering

Research Council of Canada, Ericsson and Defence Research
and Development Canada.

LEGAL STATEMENT

This work represents the views of the authors and does not
necessarily represent the view of EfficiOS, Ecole Polytech-

nique de Montreal, Harvard, IBM, or Portland State Uniugrsi [

Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trade-

marks or service marks of others.

[1]

[2]

3]

[4]

[5]

[6]

[15]

REFERENCES [16]

B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm,
“Tornado: Maximizing locality and concurrency in a[17]
shared memory multiprocessor operating system,” in
Proceedings of the™ Symposium on Operating System
Design and ImplementatiotNew Orleans, LA, February
1999, pp. 87-100.

J. P. Hennessy, D. L. Osisek, and J. W. Seigh Il, “Passiy&3]
serialization in a multitasking environment,” US Patent
and Trademark Office, Washington, DC, Tech. Rep. US
Patent 4,809,168 (lapsed), February 1989. [19]
V. Jacobson, “Avoid read-side locking via delayed ftee,
September 1993, private communication.

A. John, “Dynamic vnodes — design and implementa-
tion,” in USENIX Winter 1995 New Orleans, LA:
USENIX Association, January 1995, pp. 11-23.

P. E. McKenney and J. D. Slingwine, “Read-copy updat¢20]
Using execution history to solve concurrency problems,”
in Parallel and Distributed Computing and Systerhas
Vegas, NV, October 1998, pp. 509-518.

S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,

M. F. Kaashoek, R. Morris, and N. Zeldovich, “An[21]
analysis of Linux scalability to many cores,” i@
USENIX Symposium on Operating System Design and
Implementation Vancouver, BC, Canada: USENIX,
October 2010, pp. 1-16.

fL1)

[13]

K. Fraser and T. Harris, “Concurrent programming with-
out locks,”ACM Trans. Comput. Systol. 25, no. 2, pp.
1-61, 2007.

, . [10] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N.
We owe thanks to Maged Michael, Etienne Bergeron,

Scherer Ill, and N. Shavit, “A lazy concurrent list-based
set algorithm,” inPrinciples of Distributed Systems, 9th
International Conference OPODIS 2005 Springer-
Verlag, 2005, pp. 3—-16.

H. T. Kung and Q. Lehman, “Concurrent maintenance
of binary search treesACM Transactions on Database
Systemsvol. 5, no. 3, pp. 354-382, September 1980.
P. Becker, “Working draft, standard for programming
language C++,” August 2010, [Online]. Available:
http://open-std.org/jtcl/sc22/wg21/docs/papers/2010
n3126.pdf.

D. Guniguntala, P. E. McKenney, J. Triplett, and
J. Walpole, “The read-copy-update mechanism for sup-
porting real-time applications on shared-memory multi-
processor systems with LinuxJBM Systems Journal
vol. 47, no. 2, pp. 221-236, May 2008.

14] P. E. McKenney and J. Walpole. (2007, December)

What is RCU, fundamentally? [Online]. Available: Linux
Weekly News, http://lwn.net/Articles/262464/.

M. Herlihy, “Implementing highly concurrent data ob-
jects,” ACM Transactions on Programming Languages
and Systemsvol. 15, no. 5, pp. 745-770, Nov. 1993.

R. K. Treiber, “Systems programming: Coping with
parallelism,” April 1986, RJ 5118.

D. Sarma and P. E. McKenney, “Making RCU safe
for deep sub-millisecond response realtime applications,
in Proceedings of the 2004 USENIX Annual Technical
Conference (FREENIX Track) USENIX Association,
June 2004, pp. 182-191.

P. E. McKenney. (2008, January) What is RCU? part 2:
Usage. [Online]. Available: Linux Weekly News, http:
/'wn.net/Articles/263130/.

——, “Exploiting deferred destruction: An analysis of
read-copy-update techniques in operating system ker-
nels,” Ph.D. dissertation, OGI School of Science and
Engineering at Oregon Health and Sciences University,
2004, [Online]. Available: http://www.rdrop.com/users/
paulmck/RCU/RCUdissertation.2004.07.14e1.pdf.

P. E. McKenney and D. Sarma, “Towards hard real-
time response from the Linux kernel on SMP hard-
ware,” in linux.conf.au 2005Canberra, Australia, April
2005, [Online]. Available: http://www.rdrop.com/users/
paulmck/RCU/realtimeRCU.2005.04.23a.pdf.

A. Arcangeli, M. Cao, P. E. McKenney, and D. Sarma,
“Using read-copy update techniques for System V
IPC in the Linux 2.5 kernel,” inProceedings of the
2003 USENIX Annual Technical Conference (FREENIX
Track) USENIX Association, June 2003, pp. 297-310.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010

[22] M. Greenwald and D. R. Cheriton, “The synergy be-
tween non-blocking synchronization and operating syg38]
tem structure,” inProceedings of the Second Symposium
on Operating Systems Design and ImplementatiBeat-

tle, WA: USENIX Association, Oct. 1996, pp. 123-136.

M. Desnoyers, “Low-impact operating system tracing,”

Ph.D. dissertation, Ecole Polytechnique de Mealy

December 2009, [Online]. Available: http://www.lttng.[39]

org/pub/thesis/desnoyers-dissertation-2009-12.pdf.

P.-M. Fournier, M. Desnoyers, and M. R. Dagenais,

“Combined tracing of the kernel and applications with

LTTng,” in Proceedings of the 2009 Linux Symposium

Jul. 2009.

T. Jinmei and P. Vixie, “Implementation and evaluatiof40]

of moderate parallelism in the BIND9 DNS server,” in

Proceedings of the annual conference on USENIX Annual

Technical ConferengeBoston, MA, February 2006, pp.

115-128.

Programming languages —,dSO WG14 Std., May

2005, [Online]. Available: http://www.open-std.orglfic [41]

sc22/wgld/www/docs/n1124.pdf.

[27] Guide to Parallel ProgrammingSequent Computer Sys-
tems, Inc., 1988.

[28] M. Desnoyers, “[RFC git tree] userspace RCU (urcu) for
Linux,” February 2009, [Online]. Available: http://lkml.
org/lkml/2009/2/5/572, http://lttng.org/urcu.

[29] M. Herlihy, “Wait-free synchronization ACM TOPLAS
vol. 13, no. 1, pp. 124-149, January 1991.

[30] P. E. McKenney, “Using a malicious user-level RCU to
torture RCU-based algorithms,” itinux.conf.au 2009
Hobart, Australia, January 2009, [Online]. Available:
http://www.rdrop.com/users/paulmck/RCU/urcutorture.
2009.01.22a.pdf.

[31] ——. (2007, October) The design of preemptible read-

copy-update. [Online]. Available: Linux Weekly News,

http://lwn.net/Articles/253651/.

M. M. Michael and M. L. Scott, “Nonblocking algo-

rithms and preemption-safe locking on multiprogrammed

shared memory multiprocessors). Parallel Distrib.

Comput, vol. 51, no. 1, pp. 1-26, 1998.

J. M. Mellor-Crummey and M. L. Scott, “Algorithms for

scalable synchronization on shared-memory multiproces-

sors,” Transactions of Computer Systemsl. 9, no. 1,

pp. 21-65, February 1991.

[34] W. C. Hsieh and W. E. Weihl, “Scalable reader-writer

locks for parallel systems,” irProceedings of the 16

International Parallel Processing SymposiumBeverly

Hills, CA, USA, March 1992, pp. 216-230.

C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu,

S. Chiras, and S. Chatterjee, “Software transactional

memory: Why is it only a research toyACM Queue

September 2008.

L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec:

streamlining STM by abolishing ownership records,” in

PPOPR 2010, pp. 67-78.

[37] A. Dragovejic, P. Felber, V. Gramoli, and R. Guerraoui,
“Why STM can be more than a research toy,” Febru-
ary 2010, [Online]. Available: http://infoscience.epfflic

(23]

[24]

[25]

[26]

[32]

[33]

[35]

[36]

17

record/144052/files/paper.pdf.

H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C.
Minh, W. Baek, C. Kozyrakis, and K. Olukotun, “A scal-
able, non-blocking approach to transactional memory,” in
HPCA Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer Architecgture
2007, pp. 97-108.

S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar,
and R. Balasubramonian, “Scalable and reliable commu-
nication for hardware transactional memory,” RACT
Proceedings of the 17th International Conference on Par-
allel Architectures and Compilation Techniquez008,
pp. 144-154.

D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early expe-
rience with a commercial hardware transactional memory
implementation,” inFourteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’‘08jashington, DC,
USA, March 2009, pp. 157-168.

P. E. McKenney, “RCU vs. locking performance on dif-
ferent CPUs,” inlinux.conf.ay Adelaide, Australia, Jan-
uary 2004, [Online]. Available: http://www.rdrop.com/
users/paulmck/RCU/lockperf.2004.01.17a.pdf.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 18

Mathieu Desnoyers is President &
Founder of EfficiOS. He maintains the|
LTTng project and the Userspace RC
library. His research interests are in pe
formance analysis tools, operating sy
tems, scalability and real-time concerns.
He holds a Ph.D. degree in Computer
Engineering from Ecole Polytechnique de |,
Montreal (2010).

Paul E. McKenney is an Distin-
guished Engineer at IBM. He main-
tains the Linux-kernel RCU implemen-
tations, and his primary research interes
is shared-memory parallel software. Hd
holds a Ph.D. in computer science an{
engineering from Oregon Health and Sci
ences University (2004).

Alan S. Stern received a Ph.D. in
Mathematical Logic from the University
of California at Berkeley in 1984. His
current position at the Rowland Insti-
tute at Harvard is Staff Computational
Scientist. He is actively involved with
Linux kernel development, particularly in
the USB and Power Management subsy‘
tems.

\

Michel R. Dagenaisis professor at
Ecole Polytechnique de Montreal, in the
Computer and Software Engineering De-
partment. His research interests includg
several aspects of multi-core distribute
systems with emphasis on Linux andi
open systems. His group has made seve
original contributions to Linux.

Jonathan Walpoleis a Full Professor
in the Computer Science Department at
Portland State University. His research in-
terests are in operating systems, and scal-
able concurrent programming. He holds
B.Sc. and Ph.D. degrees in Computg
Science from Lancaster University, UK
(1984 and 1987).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 19

APPENDIX other thanT and all iterations of thewhile loop other
than the last (the assertion Adolds precisely because this
is the last loop iteration). Both here and above, the use of
This appendix presents a semi-formal verification that thgarrier() , LOAD_SHARED() and STORE_SHARED()
QSBR implementation satisfies RCU’s grace-period guaeant@rimitives forces the compiler to generate the instructiom
Unfortunately it is not possible to prove this outright, agi the order shown. However the hardware is free to reorder them
to the 32-bit wraparound failure discussed in Section IV-Gyithin the limits imposed by the memory barriers.
We will thereforeassumehat such failures don’t occur. We number the grace periods starting from 1, letting:§t

Theorem Assuming that threads are never preempted tgfand for a fictitious instruction initia_lizingcu_gp_ctr _
too long (see below), in any execution of a program using i@ 1 Pefore the program starts. In this way each(ad is

QSBR implementation, the grace-period guarantee (Formul@'€ceded by some &,). Furthermore, because there are no
in Section 11-D1) is satisfied. other assignments t@u_gp_ctr , it is easy to see that for

Proof: Given QSBR's implementation, we focus arc- eachn, z, is equal to2n + 1 truncated to the number of bits

tive segmentsthe periods between quiescent states. Mof8 &n “F‘?‘Q”ed long)))
precisely, an active segment is a sequence of instruc-Our initial assumption regarding overly-long preemption

tions bounded at the start beu quiescent state ~ now amounts to the requirement that not toq many grace
byu_q = 0 periods occur between each (ug) and the following Stzy,).

A. Quiescent-State-Based Reclamation RCU

rcu_thread_online() , or lines 12-15 ofsynchro- , X i

nize_rcu() in Figure 8; bounded at the end bgu_- Grace periodsn throughn — 1 occur during this interval when
quiescent_state() , rcu_thread_offline() or Ld(@r) = St(zn) and Ldv,—1) — St(zy) (recall that ="
lines 5-8 afsynchronize rcu()_ in_Figure 8: and contain- 'ndicates that the statement on the left executes priorabdh
ing no other references t@u reader.ctr .,Every read- the right). Under such conditions we therefore require m

to be sufficiently small tha2(n — m + 1) does not overflow
anunsigned long and hencer,,_1 # z,.
_ Let us now verify the grace-period guarantee for a read-side
ﬁﬂ ical section occurring during thredl's active segmenk
and for grace perioah.
Ld(xg): @, = rcu_gp_ctr Case 1: Stz,,) — Ld(xy). Since these. two instructions both
St(z): reu reader.ctr R accesscu_gp_ctr , the memory barrier property for MB
MBO: smE mb() _and M@ says thatV/,, ; — Ry ; fo_r eachi, _j._Thus_ Formula 1
k R o'_Rk Rieor . in Section 1I-D1 holds becaqse its left d|SJu_nct is true.
MB!: sm’p, mb’()' - Case 2: L(ﬂvg) — St(xy). Slr?ce these tvgo instructions bfoth
. _ai accesscu_reader.ctr T, the memory barrier property for
;(tj((yy:)) i/gu—rét;lg;er.r(;:rU_gp;Ci " or0)]Ic\/l:?% and M@Csays 1thatMm- — Ry ; for eachi, j. The rest
- . . ollows as in Case 1.
rHlegerl,Lcl:Ctr andT yfef:rrse t én;(i;m;(zgﬁcevagetshear;)icrL-]t—hread Case 3: Syx) — Ld(v,). Since these two instructions both
rcu reader structure. The L) line sets g, to acc?sscu_reader.ctr T, the memory barrier prqperty for
rcu:gp_ctr if the active segment ends witlbu_quies- MB,, and MB, says thatRy; — Dn,; for eachi, j. Thus

) . X . Formula 1 holds because its right disjunct is true.
cent_state() (in which casey;, is z41, as the call will

| K the beginni fh t act 0 ottErwi Case 4: None of Cases 1-3 above. Since cache coherence
iatlz(()atrsnar o g eginning of the next active segment); o W'guarantees that loads and stores from all threads to a given
Yk .

variable are totally ordered, it follows that — St(z,
Execution of update_counter_and_wait() is of y ta.) (zn)

ialized by th lock henth and Stzy) — Ld(v,) — St(yx). We claim that this case can-
course serialized by theeu_gp_ OCK mutex. Thent OC- " hot occur without violating our assumption about wraparbun
currence of this routine, together with the statementsqutieg failures. Indeed, suppose it does occur, and takeo be the

(My,q) and following it (Dy, ;), can be expressed so: least index for which L¢ir,) — St(z,,). Clearlym < n.

side critical section is part of an active segment.

Execution of the:th active segment in thread (comprising
statementsRy, ; together with some of the bounding state
ments) can be represented as a sequence of labelled pse
code instructions:

M 0; My 1 My o; - Since Stz,,_1) — Ld(xy) — St(2,,), x), must be equal to
MBZ: smp_mb() Zm—1. Similarly, v, must be equal ta:;;. Sincez,,_; cannot
be 0, As, implies thatz,,_; = z,, and sincem < n, this is
Ld(z,): 2, =rcu_gp_ctr +2 possible only if2(n — m + 1) overflows (and hence > m).
St(z,): reu_gp_ctr =z, Now consider grace perioch — 1. Since Stz.) pre-
cedes St,_1) we have Ldxy) — Sft(z,-1), and since
Ld(v,): v, =rcu_reader.ctr Ld(v,_1) precedes L(b,) we also have Lb, ;) — St(yz).
Asy: assertf, =0 or v, = z,) If St(zyx) — Ld(v,_1) then active segmenk and grace
period n — 1 would also fall under Case 4, implying that
MB?: smp_mb() Zm-1 = zn_1, Which is impossible because, 1 # z,.
Dyo; Dy Dy, ... Hence we must have Ld, 1) — St(x;). But thenm andn

Several things are omitted from this summary, includingould violate our requirement on the number of grace periods
the list_for_each_entry() loop iterations for threads elapsing between Ld;) and Stz:). QED.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 20

B. General-Purpose RCU eachi, 7. Thus Formula 1 holds because its right disjunct is
This appendix presents a semi-formal verification that tHE€-)

general-purpose implementation satisfies RCU’s gracieger Case 3: Neither of Cases 1-2 above. FO{) e’mh’? must

guarantee, assuming that read-side critical sections are fave Strxo) — Ld(vy') — Stys); thereforev, andv, must

nested too deeply. be equal taz, ; for some values ot > 0. We are assuming
Proof: Using the same notation as in Appendix A, executioiat the maximum nesting level of read-side critical sexio

of the kth outermost read-side critical section in thréad¢an does not exceed the 16-bit capacity REU_NEST_MASK

be represented as follows: therefore eachr,; has a nonzero nesting level and has the
2,0 = FCU_gp_ctr same phase number ag o, and the same must be true of
k,0 _gp_ 0 1 .
St(w0): rcu_reader.ctr T = Tho Un, and Up- However the phase number ofu_gp_ctr is
MBY: smp__mb() d|ff1erent in Ag and A_slh, thanks to ng. Hence A§ and .
{ Rio; Rit; Ri; ... As,, cannot both hold, implying that this case can never arise.
St(zx;): rcu_reader.ctr T =Tk .-} QED.
MB smp_mb()
Yy, = rcu_reader.ctr T - C. Barrier Promotion Using Signals
RCU_NEST_COUNT This appendix discusses how the signal-based RCU im-
St(yr): rcu_reader.ctr T = Yk plementation is able to “promote” compiler barriers to full
Here xy is the value read by OAD_SHARED()in the fledged memory barriers. A more accurate, if less dra-
outermostrcu_read_lock() , x; for i > 0 corresponds matic, statement is that the combinationhafrrier() and
to thei™ nested call by thread’ to rcu_read_lock() or force_mb_all_threads() obeys a strong form of the
rcu_read_unlock() in time order (the {...}” notation fundamental ordering property of memory barriers. Namely,

is intended to express that these calls are interspersedgam® one thread executes the statements

the R, ; statements), ang, is the value in theSTORE_- Ar: A Aoc - barfi P > JPT
it) ! — ; ; ; ..., barrier ; Bo; By Bs; ...

SHARED() call in thercu_read_unlock() that ends the 00 71y 2 0 00l 2

critical section. The memory barriers are present becéhise @nd another thread executes the statements

is an outermost read-side critical section. Co; C1; Co; ... force_mb_all_threads() ;
The nth occurrence ofsynchronize_rcu() , together Dq; D1; Do ...
with the statements preceding and following it, can siylarthen either A; — D; (all i,5) or C; — Bj (all 4,j).
be expressed as: To see why, consider that thethread Kkill() call in
M0y M1, Myo; ... force_mb_all_threads() forces the first thread to in-
MB2: smp_mb() voke sigrcu_handler() at some place in its instruction
stream, either before all thB; or after all theA; (although
Todl: rcu_gp_ctr "= RCU_GP_CTR_PHASE barrier() does not generate any executable code, it does
force the compiler to emit all the object code for thg
Ld(v2): v% =rcu_reader.ctr T instructions before any of the3; object code). Suppose
As: assert(’’s nesting level is 0 or its sigrcu_handler() is called after all thed;. Then the

phase number agrees witbu_gp_ctr) first thread actually executes
Ag; Ay Ag; ... smp_mb() ;

Tog,: reu_gp_ctr "= RCU_GP_CTR_PHASE STORE_SHARED(rcu_reader.need_mb, 0) ;
Ld(v)): vrlz _rcu_reader.ctr . Since the second thread executes
Asl: assert(.’s nesting level is 0 or its LOAD_SHARED(index->need_mb) ; ...;
phase number agrees witbu_gp_ctr) smp_mb() ; Do; D1; D2 ...
in its last loop iteration for the first thread and the followi
MB3: smp_mb() statements, and since th€®®AD SHARED() sees the value
Dyo; Dujas D - stored by theSTORE_SHAREDY() it follows that A; — D;

As before, the assertions hold because these statementsfoﬁrr ll4, j. The case whermgrgu_'handler() runs before
all'the B; can be analyzed similarly.

from the last iteration of thevhile loop for threadT. We
can now verify the grace-period guarantee 76s read-side
critical sectionk and for grace perioah.

Case 1. Ldv') — St(zxo), m = 0 or 1. Since these
instructions all accesscu_reader.ctr T, the memory
barrier property for MB and MB) says thatM,,; — Ry ;
for eachi, j. Thus Formula 1 in Section 11-D1 holds because
its left disjunct is true.

Case 2: Syx) — Ld(v™), m = 0 or 1. Then the memory
barrier property for MB and MB} says thatR?;, ; — D,, ; for

