
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 1

Supplementary Material for
User-Level Implementations of Read-Copy Update

Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais and Jonathan Walpole

Abstract—Read-copy update (RCU) is a synchronization tech-
nique that often replaces reader-writer locking because RCU’s
read-side primitives are both wait-free and an order of magnitude
faster than uncontended locking. Although RCU updates are
relatively heavy weight, the importance of read-side performance
is increasing as computing systems become more responsive to
changes in their environments.

RCU is heavily used in several kernel-level environments.
Unfortunately, kernel-level implementations use facilities that
are often unavailable to user applications. The few prior user-
level RCU implementations either provided inefficient read-
side primitives or restricted the application architecture. This
paper fills this gap by describing efficient and flexible RCU
implementations based on primitives commonly available to user-
level applications.

Finally, this paper compares these RCU implementations with
each other and with standard locking, which enables choosing
the best mechanism for a given workload. This work opens the
door to widespread user-application use of RCU.

Index Terms—D.4.1.f Synchronization< D.4.1 Process Man-
agement < D.4 Operating Systems < D Software/Software
Engineering, D.4.1.g Threads< D.4.1 Process Management< D.4
Operating Systems< D Software/Software Engineering, D.4.1.a
Concurrency < D.4.1 Process Management< D.4 Operating
Systems< D Software/Software Engineering

I. I NTRODUCTION

READ-COPY UPDATE (RCU) is a synchronization tech-
nique that was added to the Linux kernel in October of

2002. In contrast with conventional locking techniques that
ensure mutual exclusion among all threads, or with reader-
writer locks that allow readers to proceed concurrently with
each other, but not with updaters, RCU permits both readers
and updaters to make concurrent forward progress. RCU en-
sures that reads are coherent by maintaining multiple versions
of objects and ensuring that each version remains intact until
the completion of all RCU read-side critical sections that
might reference that version. RCU defines and uses efficient
and scalable mechanisms for publishing and reading new

Manuscript received August 17, 2009; revised November 12, 2010
Mathieu Desnoyers (mathieu.desnoyers@efficios.com) is withEfficiOS,

work done while at the Computer and Software Engineering Department,
Ecole Polytechnique de Montreal.

Paul E. McKenney (paulmck@linux.vnet.ibm.com) works at the IBM Linux
Technology Center on the Linaro project.

Alan S. Stern (stern@rowland.harvard.edu) is with the Rowland Institute,
Harvard University.

Michel R. Dagenais (michel.dagenais@polymtl.ca) is with theComputer
and Software Engineering Department, Ecole Polytechnique de Montreal.

Jonathan Walpole (walpole@cs.pdx.edu) is with the ComputerScience
Department, Portland State University.

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

versions of an object and for deferring reclamation of old
versions. These mechanisms distribute the work between read
and update paths so as to make read paths extremely fast,
typically more than an order of magnitude faster than un-
contended locking. RCU’s light-weight read paths support the
increasing need to track read-mostly connectivity, hardware-
configuration, and security-policy data. Other mechanisms
must be used to coordinate among multiple writers, for ex-
ample locking, transactions, non-blocking synchronization, or
single designated updater thread.

Techniques similar to RCU have appeared in several
operating-system kernels [1, 2, 3, 4, 5], and, as shown in
Figure 1, RCU is heavily used in the Linux kernel [6].
One reason RCU is heavily used is that it eases lock-based
programming when the locks themselves are dynamically
created and destroyed, which occurs frequently in concurrent
programs. However, RCU is not heavily used in applica-
tions, in part because prior user-level RCU-like algorithms
severely constrained application design [7], incurred heavy
read-side overhead [8, 9], or relied on sequential consistency
and garbage collection [10, 11]. The popularity of RCU in
operating-system kernels owes much to the fact that ker-
nels can accommodate the global constraints imposed by the
high-performance quiescent-state based reclamation (QSBR)
class of RCU implementations. QSBR implementations pro-
vide unmatched performance and scalability for read-mostly
data structures on cache-coherent shared-memory multiproces-
sors [7], even with weakly ordered hardware and compilers.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2
00

2

 2
00

3

 2
00

4

 2
00

5

 2
00

6

 2
00

7

 2
00

8

 2
00

9

 2
01

0

 2
01

1

R

C
U

 A
P

I U
se

s

Year

Fig. 1. Linux-Kernel Usage of RCU

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 2

Whereas we cannot yet put forward a single user-level RCU
implementation that is ideal for all environments, the three
classes of RCU implementations described in this paper should
suffice for most user-level uses of RCU.

This article is organized as follows: Section II first provides
a brief overview of RCU, including RCU semantics. Then,
Section III describes user-level scenarios that could benefit
from RCU. This is followed by the presentation of three
classes of RCU implementation in Section IV. Section V
presents experimental results, comparing RCU implementa-
tions to each other and to locking, and finally Section VI
presents conclusions and recommendations.

II. B RIEF OVERVIEW OF RCU

This overview begins with an introduction to RCU con-
cepts in Section II-A. Section II-B shows how to delete
an element from an RCU-protected linked list in spite of
concurrent readers. Section II-C presents a list of informal
RCU desiderata, which details the goals pursued in this work.
Finally, Section II-D gives a more detailed description of RCU
semantics and guarantees.

A. Conceptual View of RCU Algorithms

RCU readers execute withinRCU read-side critical sec-
tions. Each such critical section begins withrcu_read_-
lock() , ends withrcu_read_unlock() , and may con-
tain rcu_dereference() or equivalent functions that ac-
cess pointers to RCU-protected data structures. These pointer-
access functions implement the notion of a dependency-
ordered load, also known as amemory_order_consume
load [12], which suppresses aggressive code-motion compiler
optimizations and generates a simple load on any system other
than DEC Alpha, where it generates a load followed by a
memory-barrier instruction. The performance benefits of RCU
are due to the fact thatrcu_read_lock() and rcu_-
read_unlock() are exceedingly fast. In fact, Section IV-C
will show how these two primitives can incur exactly zero
overhead, as they do in server-class Linux-kernel builds [13].

When a thread is not in an RCU read-side critical section,
it is in a quiescent state. A quiescent state that persists for
a significant time period is anextended quiescent state. Any
time period during which every thread has been in at least
one quiescent state is agrace period; this implies that every
RCU read-side critical section that starts before a grace period
must end before that grace period does. Distinct grace periods
may overlap, either partially or completely. Any time period
that includes a grace period is by definition itself a grace
period [13, 14]. Each grace period is guaranteed to complete
as long as all read-side critical sections are finite in duration;
thus even a constant flow of such critical sections is unable to
extend an RCU grace period indefinitely.

Suppose that readers enclose each of their data-structure
traversals in an RCU read-side critical section. If an updater
first removes an element from such a data structure and then
waits for a grace period, there can be no more readers access-
ing that element. The updater can then carry out destructive
operations, for example freeing the element, without disturbing

T
hr

ea
ds Reader 2

Reader 3

Reader 4

Reader 1

Updater

rcu_read_lock()

reads reads

reads reads

reads reads

reads

reclamationremoval

reads

Time

rcu_read_unlock()

rcu_assign_pointer()

synchronize_rcu()

reads

grace period

Pre−existing reads

of pre−existing reads

Grace period
waits for completion

Fig. 2. Schematic of RCU Grace Period and Read-Side Critical Sections

any readers. A high-level schematic of such an RCU-based
algorithm is shown in Figure 2. Here, each box labeled “reads”
is an RCU read-side critical section.

Each row of read-side critical sections denotes a separate
thread, for a total of four read-side threads. The bottom rowof
the figure denotes a fifth thread performing an RCU update.
This RCU update is split into two phases, a removal phase
on the lower left of the figure and a reclamation phase on
the lower right. These two phases must be separated by a
grace period, for example via thesynchronize_rcu()
primitive, which initiates a grace period and waits for it to
finish. During the removal phase, the RCU update removes
elements from a shared data structure (possibly inserting
some as well) by callingrcu_assign_pointer() or
an equivalent pointer-replacement function. Thercu_as-
sign_pointer() primitive implements the notion of store
release [12], which on sequentially consistent and total-store-
ordered systems compiles to a simple assignment. Pointers
stored byrcu_assign_pointer() can be fetched from
within read-side critical sections byrcu_dereference() .
The removed data elements will only be accessible to read-side
critical sections that ran concurrently with the removal phase
(shown in gray), which are guaranteed to complete before the
grace period ends. Therefore the reclamation phase can safely
free the data elements removed by the removal phase.1

A single grace period can serve multiple removal phases,
even those carried out by multiple updaters. Furthermore, the
overhead of tracking RCU grace periods can be piggybacked
on existing process-scheduling operations, to which RCU adds
a small constant overhead. For some common workloads, the
grace-period-tracking overhead of RCU during a given time
interval may be amortized over an arbitrarily large number of
RCU updates in that same interval [17], resulting in average
per-RCU-update overheads arbitrarily close to zero.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 3

Updater

Reader initiated
before start of
grace period

Reader initiated
after start of
grace period

synchronize_rcu() free(B)

Grace period

list_del_rcu(B)

A

B

C

A

B

C

A

B

C

C

A

C

A

A

C

A

B

C

A

B

C

A

B

C

Fig. 3. RCU Linked-List Deletion

B. RCU Deletion From a Linked List

RCU-protected data structures in the Linux kernel include
linked lists, hash tables, radix trees, and a number of custom-
built data structures. Figure 3 shows how RCU may be used to
delete an element from a linked list that is concurrently being
traversed by RCU readers, as long as each reader conducts its
traversal within the confines of a single RCU read-side critical
section. The first and second rows present the data structure
from the viewpoint of a reader thread that started before (first
row) or after (second row) the grace period began. The last row
of the figure shows the updater’s view of the data structure.

The first column of the figure shows a singly-linked list with
elementsA, B, and C. Any reader initiated before the grace
period might hold references to any of these elements.

The list_del_rcu() routine unlinks elementB from
the list, but leaves the link fromB to C intact, as shown
on the second column of the figure. This permits readers
already referencingB to advance toC, as shown on the
second and third columns of the figure. The transition from the
second to the third column shows elementB disappearing from
the reader-thread viewpoint. During this transition, element B
moves fromglobally visible, where any reader may obtain a
new reference, tolocally visible, where only readers already
having a reference can see elementB.

The synchronize_rcu() primitive waits for a grace
period, after which all pre-existing read-side critical sections
will have completed, resulting in the state shown in the fourth
column of the figure, where readers no longer hold references
to elementB. ElementB’s transition from locally visible to
private is denoted by the white background for theB box. It is
then safe to invokefree() , reclaiming elementB’s memory,
as shown in the last column of the figure.

Although RCU has many uses, this list-deletion process is
frequently used to replace reader-writer locking [18].

1Interestingly enough, placing non-blocking-synchronization (NBS) [15]
updates in RCU read-side critical sections admits the same simplifications to
NBS algorithms that are commonly provided by automatic garbage collectors.
In particular, this approach avoids the ABA problem [16].

C. User-Space RCU Desiderata

Extensive use of RCU within the practitioner community
has lead to the following user-space RCU desiderata:

1) RCU read-side primitives must haveO(1) computational
complexity with a small constant, thus enabling real-
time use and avoiding lock-based deadlocks. “Small
constant” means avoiding expensive operations such as
cache misses, atomic instructions, memory barriers, and,
where feasible, conditional branches [19].

2) RCU read-side primitives should be usable in all con-
texts, including nested within other RCU read-side crit-
ical sections and inside user-level signal handlers [13].

3) RCU read-side primitives must be unconditional, with
neither failure nor retry, thus avoiding livelocks [20].

4) RCU readers must not starve writers, even given arbitrar-
ily high rates of time-bounded read-side critical sections.

5) RCU read-side critical sections may not contain opera-
tions that wait for a grace period, such assynchro-
nize_rcu() (it would self-deadlock), nor may they
acquire locks that are held across calls tosynchro-
nize_rcu() . However, non-interfering lock acquisi-
tion/release and other non-idempotent operations such
as I/O should be permitted [21].

6) Mutating RCU-protected data structures must be permit-
ted within RCU read-side critical sections, for example
by acquiring the lock used to protect updates [21]. Such
lock acquisitions can be thought of as unconditional
read-to-write upgrades. However, any lock acquired
within a read-side critical section cannot be held while
waiting for a grace period.

7) RCU primitives should be independent of memory allo-
cator design and implementation [20].

Although in-kernel RCU implementations are common,
making them available to user applications is not practical.
Firstly, many kernel-level RCU implementations assume that
RCU read-side critical sections cannot be preempted, which
is not the case at user level. Secondly, a user application
invoking kernel-level RCU primitives could hang the system
by remaining in an RCU read-side critical section indefinitely.
Finally, invoking any in-kernel RCU implementation from
user-level code introduces system-call overhead, violating the
first desideratum above.

In contrast, the RCU implementations described in Sec-
tion IV are designed to meet the above list of desiderata with
acceptably low overheads.

D. Overview of RCU Semantics

RCU semantics comprise thegrace-period guaranteeand
the publication guarantee. As noted earlier, concurrent modi-
fications of an RCU-protected data structure must be coordi-
nated by some other mechanism, for example, locking.

1) Grace-Period Guarantee:As noted in Section II-A,
RCU read-side critical sections are delimited byrcu_-
read_lock() and rcu_read_unlock() , and RCU
grace periods are periods of time such that all RCU read-
side critical sections in existence at the beginning of a given
grace period have completed before its end.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 4

Somewhat more formally, consider a group of statements
Ri within a single RCU read-side critical section:

rcu_read_lock() ;
R0; R1; R2; . . . ;
rcu_read_unlock() ;

Consider also groups of statementsMm (some of which
may mutate shared data structures) andDn (some of which
may destroy shared data structures) separated bysynchro-
nize_rcu() :

M0; M1; M2; . . . ; synchronize_rcu() ; D0; D1; D2; . . . ;

Then the following holds, where “→” indicates that the
statement on the left executes prior to that on the right:2

∀m, i(Mm → Ri) ∨ ∀i, n(Ri → Dn). (1)

In other words, a given read-side critical section cannot extend
beyond both sides of a grace period. (Figure 2 above provides
a striking illustration of this idea.) Formulas 2 and 3 follow
straightforwardly and are often used to validate uses of RCU
(“=⇒” denotes logical implication):

∃i,m(Ri → Mm) =⇒ ∀j, n(Rj → Dn), (2)

∃n, i(Dn → Ri) =⇒ ∀m, j(Mm → Rj). (3)

In other words, if any statement in a given read-side critical
section executes prior to any statement preceding a given
grace period, then all statements in that critical section must
execute prior to any statement following this same grace
period. Conversely, if any statement in a given read-side
critical section executes after any statement following a given
grace period, then all statements in that critical section must
execute after any statement preceding this same grace period.3

This guarantee permits RCU-based algorithms to trivially
avoid a number of difficult race conditions whose resolution
can otherwise result in poor performance, limited scalability,
and great complexity. However, on weakly ordered systems
this guarantee is insufficient. We also need some way to
guarantee that if a reader sees a pointer to a new data structure,
it will also see the values stored during initialization of that
structure. This guarantee is presented in the next section.

2) Publication Guarantee:Note well that the statementsRi

andMm may execute concurrently, even in the case whereRi

is referencing the same data element thatMm is concurrently
modifying. The publication guarantee provided byrcu_-
assign_pointer() andrcu_dereference() handles

2This description is deliberately vague. More-precise definitions of “A →

B” [12, Section 1.10] consider the individual memory locationsaccessed by
both A andB, and order the two statements with respect to each of those
accesses. For our purposes, what matters is thatA → B andB → A can’t
both hold. If A and B execute concurrently then both relations may fail.
However as a special case, ifA is a store to a variable andB is a load from
that same variable, then eitherA → B (B reads the value stored byA or a
later value) orB → A (B reads a value prior to that stored byA).

3Some RCU implementations may choose to weaken this guarantee so
as to exclude special-purpose operations such as MMIO accesses, I/O-port
instructions, and self-modifying code. Such weakening is appropriate on
systems where ordering these operations is expensive and where the users
of that RCU implementation either (1) are not using these operations or (2)
insert the appropriate ordering into their own code, as many system calls do.

this concurrency correctly and easily: even on weakly ordered
systems, any dereference of a pointer returned byrcu_-
dereference() is guaranteed to see any change prior
to the correspondingrcu_assign_pointer() , including
any change prior to any earlierrcu_assign_pointer()
involving that same pointer.

Somewhat more formally, suppose thatrcu_assign_-
pointer() is used as follows:

I0; I1; I2; . . . ; rcu_assign_pointer(g,p) ;

where eachIi is a statement (including those initializing fields
in the structure referenced by local pointerp), and where
global pointerg is visible to reading threads. This initialization
sequence is part of theMm sequence of statements discussed
earlier.

The body of a canonical RCU read-side critical section
would appear as follows:

. . . ; q = rcu_dereference(g) ; A0; A1; A2; . . . ;

where q is a local pointer,g is the same global pointer
updated by the earlierrcu_assign_pointer() (and pos-
sibly updated again by later invocations ofrcu_assign_-
pointer()), and some of theAi statements dereference
q to access fields initialized by some of theIi statements.
This sequence ofrcu_dereference() followed by Ai

statements is part of theRi statements discussed earlier.
Then we have the following, whereM is the rcu_ass-

ign_pointer() andR is the rcu_dereference() :4

M → R =⇒ ∀i, j(Ii → Aj). (4)

In other words, if a givenrcu_dereference() statement
accesses the value stored tog by a givenrcu_assign_-
pointer() , then all statements dereferencing the pointer re-
turned by thatrcu_dereference() must see the effects of
any initialization statements preceding thatrcu_assign_-
pointer() or any earlierrcu_assign_pointer() stor-
ing to g.

This guarantee provides readers a consistent view of newly
added data.

3) Uses of RCU Guarantees:These grace-period and publi-
cation guarantees are extremely useful, but in ways that arenot
always immediately obvious. This section therefore describes
a few of the most common uses of these guarantees.

First, they can provideexistence guarantees[1], so that
any RCU-provided data element accessed anywhere within a
given RCU read-side critical section is guaranteed to remain
intact throughout that RCU read-side critical section. Existence
guarantees are provided by ensuring that an RCU grace period
elapses between the moment a given data element is rendered
inaccessible to readers and the moment this element’s memory
is reclaimed and/or reused.

Second, the RCU guarantees can providetype-safe mem-
ory [22] by integrating RCU grace periods into the memory
allocator—for example, the Linux kernel’s slab allocator pro-
vides type-safe memory when theSLAB_DESTROY_BY_RCU

4Formula 4 is not strictly correct. On some architectures,Ii → Aj is
guaranteed only ifAj carries a data dependency from the local pointerq;
otherwise the CPU may reorder or speculatively executeAj before thercu_-
dereference() call. In practice this restriction does not lead to problems.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 5

flag is specified. This integration is accomplished by permit-
ting a freed data element to be immediately reused, but only
if its type remains unchanged. The allocator must ensure that
an RCU grace period elapses before that element’s type is
permitted to change. This approach guarantees that any data
element accessed within a given RCU read-side critical section
retains its type throughout that RCU read-side critical section.

Finally, as noted earlier, RCU’s grace-period and publication
guarantees can often be used to replace reader-writer locking.

As a result, the grace-period and publication guarantees
enable a wide variety of algorithms and data structures pro-
viding extremely low read-side overheads for read-mostly data
structures [7, 13, 18, 19]. Again, note that concurrent updates
must be handled by some other synchronization mechanism.

With this background on RCU, we are ready to consider
how it might be used in user-level applications.

III. U SER-SPACE RCU USAGE SCENARIOS

The user-level RCU work described later in this paper was
inspired by the need to reduce the overhead and improve
the scalability of theLTTng userspace tracer (UST), which
carries out performance analysis and monitoring of user-mode
applications [23, 24]. UST imposes important constraints
on the user-level RCU implementation. Firstly, UST cannot
require source-level modifications to the application under test,
which rules out the QSBR approach that will be presented in
Section IV-C. Secondly, UST must support instrumentation
of execution sites selected by the user at runtime. Because
the user is permitted to instrument signal handlers and library
functions, RCU read-side critical sections must be nestable.

BIND, a major domain-name server used for Internet
domain-name resolution, is facing scalability issues [25]. Since
domain names are read often but rarely updated, using user-
level RCU might be beneficial. Others have mentioned pos-
sibilities in financial applications. Finally, one can alsoargue
that RCU has seen long use at user level in the guise of user-
mode Linux.

In general, user-level RCU’s area of applicability appears
similar to that in the Linux kernel: to read-mostly data
structures, especially in cases where stale data can be accom-
modated.

IV. CLASSES OFRCU IMPLEMENTATIONS

This section describes several classes of RCU implemen-
tations. Section IV-A first describes some primitives that
might be unfamiliar to the reader, Section IV-B presents an
example use of RCU, and then Sections IV-C, IV-D, and IV-E
present user-space RCU implementations that are optimized
for different use cases. The QSBR implementation presented
in Section IV-C offers the best possible read-side performance,
but requires that each thread periodically calls a functionto
announce that it is in a quiescent state, thus strongly constrain-
ing the application’s design. The implementation presented in
Section IV-D places almost no constraints on the application’s
design, thus being appropriate for use within a general-purpose
library, but it has higher read-side overhead. Section IV-E
presents an implementation having low read-side overhead and

1 #define ACCESS_ONCE(x) (* (volatile typeof(x) *)&(x))
2
3 #define LOAD_SHARED(p) ACCESS_ONCE(p)
4 #define STORE_SHARED(x, v) ({ ACCESS_ONCE(x) = (v); })
5
6 #define barrier() asm volatile("" : : : "memory")

Fig. 4. Shared-Memory Compiler Primitives

requiring only that the application give up one POSIX signal
to RCU update processing. Finally, Section IV-F demonstrates
how to create non-blocking RCU update primitives.

We start with a rough overview of some elements common
to all three implementations. A global variable,rcu_gp_-
ctr , tracks grace periods. Each thread has a local variable
indicating whether or not it is currently in a read-side critical
section, together with a snapshot ofrcu_gp_ctr ’s value at
the time the read-side critical section began. Thesynch-
ronize_rcu() routine iterates over all threads, using these
snapshots to wait so long as any thread is in a read-side critical
section that started before the current grace period.

Grace periods can be tracked in two different ways. The
simplest method, used in Section IV-C, is forrcu_gp_ctr
simply to count grace periods. Because of the possibility of
counter overflow, this method is suitable only for 64-bit archi-
tectures. The other method divides each grace period up into
two phases and makesrcu_gp_ctr track the current phase.
As explained in Section IV-D below, this approach avoids the
problem of counter overflow at the cost of prolonging grace
periods; hence it can be used on all architectures.

A. Common Primitives

This section describes a number of primitives that are used
by examples in later sections.

Figure 4 introduces primitives dealing with shared mem-
ory at the compiler level. TheACCESS_ONCE()primitive
appliesvolatile semantics to its argument. TheLOAD_-
SHARED() primitive prohibits any compiler optimization that
might otherwise turn a single load into multiple loads (as
might happen under heavy register pressure), and vice versa.
The STORE_SHARED() primitive acts as an assignment
statement, but prohibits any compiler optimization that might
otherwise turn a single store into multiple stores and vice
versa. Thebarrier() primitive prohibits any compiler
code-motion optimization that might otherwise move loads or
stores across thebarrier() . Among other things, we use it
to force the compiler to reload values on each pass through a
wait loop. It is strictly a compiler directive; it emits no code.

The smp_mb() primitive (not shown in Figure 4 be-
cause its implementation is architecture-specific) emits afull
memory barrier, for example, thesync instruction on the
PowerPC architecture (“mb” stands for “memory barrier”).
The fundamental ordering property of memory barriers can
be expressed as follows: Suppose one thread executes the
statements

A0; A1; A2; . . . ; smp_mb() ; B0; B1; B2; . . . ;

and another thread executes the statements

C0; C1; C2; . . . ; smp_mb() ; D0; D1; D2; . . . ;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 6

1 pthread_mutex_t rcu_gp_lock =
2 PTHREAD_MUTEX_INITIALIZER;
3 LIST_HEAD(registry);
4
5 struct rcu_reader {
6 unsigned long ctr;
7 char need_mb;
8 struct list_head node;
9 pthread_t tid;

10 };
11 struct rcu_reader __thread rcu_reader;
12
13 void rcu_register_thread(void)
14 {
15 rcu_reader.tid = pthread_self();
16 mutex_lock(&rcu_gp_lock);
17 list_add(&rcu_reader.node, ®istry);
18 mutex_unlock(&rcu_gp_lock);
19 rcu_thread_online();
20 }
21
22 void rcu_unregister_thread(void)
23 {
24 rcu_thread_offline();
25 mutex_lock(&rcu_gp_lock);
26 list_del(&rcu_reader.node);
27 mutex_unlock(&rcu_gp_lock);
28 }

Fig. 5. RCU Reader-Thread Registry

Then∃m,n(Bm → Cn) implies ∀i, j(Ai → Dj).
These primitives can be expressed directly in terms of

the upcoming C++0x standard [12]. For thesmp_mb()
primitive this correspondence is not exact; our memory
barriers are somewhat stronger than the standard’s
atomic_thread_fence(memory_order_seq_cst) .
The LOAD_SHARED() primitive maps tox.load(mem-
ory_order_relaxed) and STORE_SHARED() to
x.store(memory_order_relaxed) . Thebarrier()
primitive maps to atomic_signal_fence(memory_-
order_seq_cst) . In addition, rcu_dereference()
maps to x.load(memory_order_consume) and
rcu_assign_pointer() maps to x.store(v,
memory_order_release) .

Figure 5 introduces declarations and data structures used
by all implementations, along with the process-wide registry
tracking all threads containing RCU read-side critical sections.
The pthread mutexrcu_gp_lock (lines 1–2) serializes
addition (line 17), removal (line 26) and iteration (which will
be presented in Figures 8, 10, and 13) on the reader thread list
(list head is at line 3 and nodes at line 8 of Figure 5). This
rcu_gp_lock also serializes grace-period detection and
updates of the global grace-period counter. Thepthread_-
mutex_t type is defined by the pthread library for mutual
exclusion variables; themutex_lock() primitive acquires
a pthread_mutex_t instance andmutex_unlock() re-
leases it. Line 11 introduces thercu_reader per-thread
variable, through which each access to per-thread registry
information is performed. These per-thread variables are de-
clared via the__thread storage-class specifier, as specified
by C99 [26], and as extended by gcc to permit cross-thread
access to per-thread variables.5 The tid field of struct

5This extension is quite common. One reason C99 does not mandate this
extension is to avoid prohibiting implementations that map anygiven per-
thread variable to a single address for all threads [27].

1 struct lin_coefs {
2 double a, b, c;
3 };
4
5 struct lin_coefs * lin_approx_p;
6
7 void control_loop(void)
8 {
9 struct lin_coefs * p;

10 struct lin_coefs lc;
11 double x, y;
12
13 rcu_register_thread();
14 for (;;) {
15 x = measure();
16 rcu_read_lock();
17 p = rcu_dereference(lin_approx_p);
18 lc = * p;
19 rcu_read_unlock();
20 y = lin_approx(x, lc.a, lc.b, lc.c);
21 do_control(y);
22 sleep_us(50);
23 }
24 }
25
26 void lin_approx_loop(void)
27 {
28 struct lin_coefs lc[2];
29 int cur_idx = 0;
30 struct lin_coefs * p;
31
32 rcu_register_thread();
33 for (;;) {
34 cur_idx = !cur_idx;
35 p = &lc[cur_idx];
36 calc_lin_approx(p);
37 rcu_assign_pointer(lin_approx_p, p);
38 synchronize_rcu();
39 sleep(5);
40 }
41 }

Fig. 6. RCU Use Case: Real-Time Control

rcu_reader entry contains the thread identifier returned by
pthread_self() . This identifier is used to send signals
to specific threads by signal-based RCU, presented in Sec-
tion IV-E. Theneed_mb field is also used by the signal-based
RCU implementation to keep track of threads which have ex-
ecuted their signal handlers. Thercu_thread_online()
and rcu_thread_offline() primitives mark the online
status of reader threads and are specific to the QSBR RCU
implementation shown in Section IV-C.

B. Example RCU Use Case

Consider a real-time closed-loop control application gov-
erned by a complex mathematical control law, where the
control loop must execute at least every 100 microseconds.
Suppose that this control law is too computationally expensive
to be computed each time through the control loop, so a
simpler linear approximation is used instead. As environmental
parameters (such as temperature) slowly change, a new linear
approximation must be computed from the full mathematical
control law. Therefore, a lower-priority task computes a set
of three coefficients for the linear approximation periodically,
for example, every five seconds. The control-loop task then
makes use of the most recently produced set of coefficients.

Of course, it is critically important that each control-loop
computation use a consistent set of coefficients. It is therefore
necessary to use proper synchronization between the control

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 7

loop and the production of a new set of coefficients. In con-
trast, use of a slightly outdated set of coefficients is acceptable.
We can therefore use RCU to carry out the synchronization, as
shown in the (fanciful) implementation in Figure 6. The overall
approach is to periodically publish a new set of coefficients
using rcu_assign_pointer() , which are subscribed to
usingrcu_dereference() . Thesynchronize_rcu()
primitive is used to prevent overwriting a set of coefficients
that is still in use. Because only one thread will be updating
the coefficients, update-side synchronization is not required.

The control_loop() function is invoked from the
thread performing closed-loop control. It first invokesrcu_-
register_thread() to make itself known to RCU, and
then enters an infinite loop performing the real-time control
actions. Each pass through this loop first measures the control
input value, then enters an RCU read-side critical section to
obtain the current set of coefficients, useslin_approx() to
compute a new control value, usesdo_control() to output
this value, and finally does a 50-microsecond delay.6 The
use of rcu_dereference() ensures that the coefficients
will be fully initialized, even on weakly ordered systems, and
the use ofrcu_read_lock() andrcu_read_unlock()
ensure that subsequent grace periods cannot complete untilthe
coefficients are completely copied.

The lin_approx_loop() function is invoked from the
thread that is to periodically compute a new set of coefficients
for use bycontrol_loop() . As with control_loop() ,
it first invokes rcu_register_thread() to make itself
known to RCU, and then enters an infinite loop performing
the coefficient calculations. To accomplish this, it definesan
array of two sets of coefficients along with an index that selects
which of the two sets is currently in effect. Each pass through
the loop computes a new set of coefficients into the element
of the array that is not currently being used by readers, uses
rcu_assign_pointer() to publish this new set, uses
synchronize_rcu() to wait for control_loop() to
finish using the old set, and finally waits for five seconds
before repeating this process.

Becausercu_dereference() is wait-free with small
overhead, this approach is well-suited to real-time systems
running on multi-core systems. In contrast, approaches based
on locking would requirecontrol_loop() to wait on
lin_approx_loop() when the latter was installing a new
set of coefficients, meaning that they might be subject to
priority inversion.

C. Quiescent-State-Based Reclamation RCU

The QSBR RCU implementation provides near-zero read-
side overhead, as has been presented earlier [7]. This section
expands on that work by describing a similar QSBR imple-
mentation for 64-bit systems. The price of minimal overhead
is that each thread in an application is required to periodically
invoke rcu_quiescent_state() to announce that it re-
sides in a quiescent state. This requirement can entail extensive
application modifications, limiting QSBR’s applicability.

6We are arbitrarily choosing a delay half that of the real-timedeadline. An
actual real-time application might compute the delay based on measuring the
overhead of the code in the loop, or it might use timers.

1 #define RCU_GP_ONLINE 0x1
2 #define RCU_GP_CTR 0x2
3
4 unsigned long rcu_gp_ctr = RCU_GP_ONLINE;
5
6 static inline void rcu_read_lock(void)
7 {
8 }
9

10 static inline void rcu_read_unlock(void)
11 {
12 }
13
14 static inline void rcu_quiescent_state(void)
15 {
16 smp_mb();
17 STORE_SHARED(rcu_reader.ctr,
18 LOAD_SHARED(rcu_gp_ctr));
19 smp_mb();
20 }
21
22 static inline void rcu_thread_offline(void)
23 {
24 smp_mb();
25 STORE_SHARED(rcu_reader.ctr, 0);
26 }
27
28 static inline void rcu_thread_online(void)
29 {
30 STORE_SHARED(rcu_reader.ctr,
31 LOAD_SHARED(rcu_gp_ctr));
32 smp_mb();
33 }

Fig. 7. RCU Read Side Using Quiescent States

QSBR uses these quiescent-state announcements toapprox-
imate the extent of read-side critical sections, treating the
interval between two successive announcements as a single,
large critical section. As a consequence, thercu_read_-
lock() and rcu_read_unlock() primitives need do
nothing and will often be inlined and optimized away, as in
fact they are in server builds of the Linux kernel. QSBR thus
provides unsurpassed read-side performance, albeit at thecost
of longer grace periods. When QSBR is being used to reclaim
memory, these longer grace periods result in more memory
being consumed by data structures waiting for grace periods,
in turn resulting in the classic CPU-memory tradeoff.

The 64-bit global counterrcu_gp_ctr shown in Figure 7
contains 1 in its low-order bit and contains the current grace-
period number in its remaining bits.7 It may be accessed at
any time by any thread but may be updated only by the thread
holding rcu_gp_lock . The rcu_quiescent_state()
function simply copies a snapshot of the global counter to
the per-threadrcu_reader.ctr variable (which may be
modified only by the corresponding thread). The 1 in the low-
order bit serves to indicate that the reader thread is not in
an extended quiescent state. The two memory barriers enforce
ordering of preceding and subsequent accesses.

As an alternative to periodically invokingrcu_quies-
cent_state() , threads may use thercu_thread_off-
line() and rcu_thread_online() APIs to mark the
beginnings and ends of extended quiescent states. These three

7If quiescent states are counted, logged, or otherwise recorded, then this
information may be used in place of the globalrcu_gp_ctr counter [5].
For example, context switches are counted in the Linux kernel’s QSBR
implementation, and some classes of user applications are expected to have
similar operations [5, Section 3.4]. However, the separate global rcu_gp_-
ctr counter permits discussion independent of any particular application.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 8

1 void synchronize_rcu(void)
2 {
3 unsigned long was_online;
4
5 was_online = rcu_reader.ctr;
6 smp_mb();
7 if (was_online)
8 STORE_SHARED(rcu_reader.ctr, 0);
9 mutex_lock(&rcu_gp_lock);

10 update_counter_and_wait();
11 mutex_unlock(&rcu_gp_lock);
12 if (was_online)
13 STORE_SHARED(rcu_reader.ctr,
14 LOAD_SHARED(rcu_gp_ctr));
15 smp_mb();
16 }
17
18 static void update_counter_and_wait(void)
19 {
20 struct rcu_reader * index;
21
22 STORE_SHARED(rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
23 barrier();
24 list_for_each_entry(index, ®istry, node) {
25 while (rcu_gp_ongoing(&index->ctr))
26 msleep(10);
27 }
28 }
29
30 static inline int rcu_gp_ongoing(unsigned long * ctr)
31 {
32 unsigned long v;
33
34 v = LOAD_SHARED(* ctr);
35 return v && (v != rcu_gp_ctr);
36 }

Fig. 8. RCU Update Side Using Quiescent States

functions must not be called from within read-side criticalsec-
tions. Thercu_thread_offline() function simply sets
the per-threadrcu_reader.ctr variable to zero, indicating
that this thread is in an extended quiescent state. Memory
ordering is needed only at the beginning of the function
because the following code cannot be in a read-side critical
section. Thercu_thread_online() function is similar
to rcu_quiescent_state() , except that it requires a
memory barrier only at the end. Note that all the functions
in Figure 7 are wait-free because they each execute a fixed
sequence of instructions.

Figure 8 showssynchronize_rcu() and its two helper
functions, update_counter_and_wait() and rcu_-
gp_ongoing() . Thesynchronize_rcu() function puts
the current thread into an extended quiescent state if it is
not already in one, forces ordering of the caller’s accesses,
and invokesupdate_counter_and_wait() under the
protection of rcu_gp_lock . The update_counter_-
and_wait() function increments the globalrcu_gp_ctr
variable by 2 (recall that the lower bit is reserved for readers
to indicate whether they are in an extended quiescent state).
It then useslist_for_each_entry() to scan all of
the threads, invokingrcu_gp_ongoing() on each, thus
waiting until all threads have exited any pre-existing RCU
read-side critical sections. Thebarrier() macro on line 23
prevents the compiler from checking the threads before up-
dating rcu_gp_ctr , which could result in deadlock. The
msleep() function on line 26 blocks for the specified num-
ber of milliseconds, in this case chosen arbitrarily. Finally, the
rcu_gp_ongoing() function checks to see if the specified

counter indicates that the corresponding thread might be in
a pre-existing RCU read-side critical section. It accomplishes
this with the two-part check on line 35: if the counter is zero,
the thread is in an extended quiescent state, while if the counter
is equal torcu_gp_ctr , the thread is in an RCU read-side
critical section that began after beginning of the current RCU
grace period, and therefore need not be waited for.

We specify a 64-bitrcu_gp_ctr to avoid overflow.
The fundamental issue is that there is no way to copy a
value from one memory location to another atomically. Sup-
pose reader threadT is preempted just before executing the
STORE_SHARED()call in rcu_thread_online() , after
the LOAD_SHARED()call has returned. Until the store takes
place the thread is still in its extended quiescent state, so
there is nothing to prevent other threads from making multiple
calls to synchronize_rcu() (and thereby incrementing
rcu_gp_ctr) during the preemption delay. If the counter
cycles through all but one of its values, the stale value finally
stored in threadT ’s rcu_reader.ctr will actually be
rcu_gp_ctr ’s next value. As a result, if another thread
later callssynchronize_rcu() afterT has entered a read-
side critical section, thenupdate_counter_and_wait()
might return beforeT has left this critical section, in violation
of RCU’s semantics. With 64 bits, thousands of years would be
required to overflow the counter and hence the possibility may
be ignored. However, given a 32-bitrcu_gp_ctr this sce-
nario is possible; hence 32-bit implementations should instead
adapt the two-phase scheme discussed in Section IV-D [28].

Given that they are empty functions, thercu_read_-
lock() and rcu_read_unlock() primitives are wait-
free under the most severe conceivable definition [29]. Because
it waits for pre-existing readers,synchronize_rcu() is
not non-blocking. Section IV-F describes how RCU updates
can support non-blocking algorithms in the same sense as they
are supported by garbage collectors.

The need for periodicrcu_quiescent_state() invo-
cations can make QSBR impossible to use in some situations,
such as within libraries. In addition, this QSBR implementa-
tion does not allow concurrentsynchronize_rcu() calls
to share grace periods—a straightforward optimization, but
beyond the scope of this paper. That said, this code can form
the basis for a production-quality RCU implementation [28].

Another limitation of the quiescent-state approach is that
applications requiring read-side critical sections in signal han-
dlers must disable signals around invocation ofrcu_quies-
cent_state() , and for the duration of extended quiescent
states marked byrcu_thread_offline() and rcu_-
thread_online() . In addition, applications needing to
invokesynchronize_rcu() while holding a lock must en-
sure that all acquisitions of that lock invokercu_thread_-
offline() , presumably via a wrapper function encapsulat-
ing the lock-acquisition primitive. Applications needingread-
side critical sections within signal handlers or that need to
invoke synchronize_rcu() while holding a lock might
therefore be better served by the RCU implementations de-
scribed in subsequent sections.

A semi-formal verification that this implementation satisfies
the grace-period guarantee (in the absence of overflow) is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 9

1 #define RCU_GP_CTR_PHASE 0x10000
2 #define RCU_NEST_MASK 0x0ffff
3 #define RCU_NEST_COUNT 0x1
4
5 unsigned long rcu_gp_ctr = RCU_NEST_COUNT;
6
7 static inline void rcu_read_lock(void)
8 {
9 unsigned long tmp;

10
11 tmp = rcu_reader.ctr;
12 if (!(tmp & RCU_NEST_MASK)) {
13 STORE_SHARED(rcu_reader.ctr,
14 LOAD_SHARED(rcu_gp_ctr));
15 smp_mb();
16 } else {
17 STORE_SHARED(rcu_reader.ctr, tmp + RCU_NEST_COUNT);
18 }
19 }
20
21 static inline void rcu_read_unlock(void)
22 {
23 smp_mb();
24 STORE_SHARED(rcu_reader.ctr,
25 rcu_reader.ctr - RCU_NEST_COUNT);
26 }

Fig. 9. RCU Read Side Using Memory Barriers

presented in Appendix A.
The next section discusses an RCU implementation that is

safe for use in libraries, the tradeoff being higher read-side
overhead.

D. General-Purpose RCU

The general-purpose RCU implementation can be used in
any software environment, including library functions that are
not aware of the design of the calling application. Such library
functions cannot guarantee that each application’s threads will
invoke rcu_quiescent_state() sufficiently often, nor
can they ensure that threads will invokercu_thread_-
offline() and rcu_thread_online() around each
blocking system call. General-purpose RCU therefore does not
require that these three functions ever be invoked.

In addition, this general-purpose implementation avoids
the counter-overflow problem discussed in Section IV-C by
using a different approach to track grace periods. Each grace
period is divided into twograce-period phases, and instead
of a free-running grace-period counter, a single-bit toggle is
used to number the phases within a grace period. A given
phase completes only after each thread’s local snapshot either
contains a copy of the phase’s number or indicates the thread
is in a quiescent state. If RCU read-side critical sections are
finite in duration, one of these two cases must eventually hold
for each thread.

Because reader threads snapshot the value ofrcu_gp_ctr
whenever they enter an outermost read-side critical section,
explicit tracking of critical-section nesting is required. Never-
theless, the extra read-side overhead is significantly lessthan
a single compare-and-swap operation on most hardware, and a
beneficial side effect is that all quiescent states are effectively
extended quiescent states. Read-side critical-section nesting is
tracked in the lower-order bits (RCU_NEST_MASK) of the per-
thread rcu_reader.ctr variable, as shown in Figure 9.
The grace-period phase number occupies only a single high-

1 void synchronize_rcu(void)
2 {
3 smp_mb();
4 mutex_lock(&rcu_gp_lock);
5 update_counter_and_wait();
6 barrier()
7 update_counter_and_wait();
8 mutex_unlock(&rcu_gp_lock);
9 smp_mb();

10 }
11
12 static void update_counter_and_wait(void)
13 {
14 struct rcu_reader * index;
15
16 STORE_SHARED(rcu_gp_ctr,
17 rcu_gp_ctr ˆ RCU_GP_CTR_PHASE);
18 barrier();
19 list_for_each_entry(index, ®istry, node) {
20 while (rcu_gp_ongoing(&index->ctr))
21 msleep(10);
22 }
23 }
24
25 static inline int rcu_gp_ongoing(unsigned long * ctr)
26 {
27 unsigned long v;
28
29 v = LOAD_SHARED(* ctr);
30 return (v & RCU_NEST_MASK) &&
31 ((v ˆ rcu_gp_ctr) & RCU_GP_CTR_PHASE);
32 }

Fig. 10. RCU Update Side Using Memory Barriers

order bit (RCU_GP_CTR_PHASE), so there is ample room to
store the nesting level.

The rcu_read_lock() function first checks the per-
thread nesting level to see if the calling thread was previously
in a quiescent state, snapshotting the globalrcu_gp_ctr
grace-period phase number [30] and executing a memory
barrier if it was, and otherwise simply incrementing the nesting
level without changing the phase number. The low-order bitsof
rcu_gp_ctr are permanently set to show a nesting level of
1, so that the snapshot can store both the current phase number
and the initial nesting level in a single atomic operation. The
memory barrier ensures that the store torcu_reader.ctr
will be ordered before any access in the subsequent RCU
read-side critical section. Thercu_read_unlock() func-
tion executes a memory barrier and decrements the nesting
level. The memory barrier ensures that any access in the
prior RCU read-side critical section is ordered before the
nesting-level decrement.8 Even with the memory barriers,
both rcu_read_lock() and rcu_read_unlock() are
wait-free with maximum overhead smaller than many other
synchronization primitives. Because they may be implemented
as empty functions,rcu_quiescent_state() , rcu_-
thread_offline() , and rcu_thread_online() are
omitted.

Figure 10 showssynchronize_rcu() and its two
helper functions, update_counter_and_wait() and
rcu_gp_ongoing() . The synchronize_rcu() func-
tion forces ordering of the caller’s accesses (lines 3 and 9)
and waits for two grace-period phases under the protection
of rcu_gp_lock , as discussed earlier. The two phases are

8In C++0x, the weakerstore(memory_order_release) barrier
would suffice, but it is not supported by gcc.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 10

separated by abarrier() to prevent the compiler from
interleaving their accesses, which could result in starvation.
The update_counter_and_wait() function is invoked
to handle each grace-period phase. This function is similarto
its counterpart in Figure 8, the only difference being that the
update torcu_gp_ctr toggles the phase number rather than
incrementing a counter. Thercu_gp_ongoing() function
is likewise similar to its earlier counterpart; it tests whether
the specified snapshot indicates that the corresponding thread
is in a non-quiescent state (the nesting level is nonzero)
with a phase number different from the current value in
rcu_gp_ctr .

To show why this works, let us verify that this two-phase
approach properly obeys RCU’s semantics, i.e., that any read-
side critical section in progress whensynchronize_rcu()
begins will terminate before it ends. Suppose threadT is in a
read-side critical section. Until the critical section terminates,
T ’s rcu_reader.ctr will show a nonzero nesting level,
and its snapshot of the phase number will not change (since
the phase number inrcu_reader.ctr changes only during
an outermostrcu_read_lock() call). The invocation of
update_counter_and_wait() during one ofsynch-
ronize_rcu() ’s grace-period phases will wait untilT ’s
phase-number snapshot takes on the value 0, whereas the
invocation during the other phase will wait until the phase-
number snapshot takes on the value 1. Each of the two
invocations will also complete ifT ’s nesting level takes on
the value 0. But regardless of how this works out, it is clearly
impossible for both phases to end beforeT ’s read-side critical
section has terminated. Appendix B presents a semi-formal
verification of this reasoning.

A natural question is “Why doesn’t a single grace-period
phase suffice?” Ifsynchronize_rcu() used a single
phase then it would be essentially the same as the function
in Figure 8, and it would be subject to the same overflow
problem, exacerbated by the use of what is effectively a single-
bit counter. In more detail, the following could occur:

1) ThreadT invokes rcu_read_lock() , fetching the
value of rcu_gp_ctr , but not yet storing it.

2) ThreadU invokes synchronize_rcu() , including
invoking update_counter_and_wait() , where it
toggles the grace-period phase number inrcu_gp_ctr
so that the phase number is now 1.

3) Because no thread is yet in an RCU read-side criti-
cal section, threadU completesupdate_counter_-
and_wait() and returns tosynchronize_rcu() ,
which returns to its caller since it uses only one phase.

4) ThreadT now stores the old value ofrcu_gp_ctr ,
with its phase-number snapshot of 0, and proceeds into
its read-side critical section.

5) ThreadU invokessynchronize_rcu() once more,
again toggling the global grace-period phase number, so
that the number is again 0.

6) When ThreadU examines ThreadT ’s rcu_reader.-
ctr variable, it finds that the phase number in the snap-
shot matches that of the global variablercu_gp_ctr .
ThreadU therefore exits fromsynchronize_rcu() .

7) But ThreadT is still in its read-side critical section, in

1 static inline void rcu_read_lock(void)
2 {
3 unsigned long tmp;
4
5 tmp = rcu_reader.ctr;
6 if (!(tmp & RCU_NEST_MASK)) {
7 STORE_SHARED(rcu_reader.ctr,
8 LOAD_SHARED(rcu_gp_ctr));
9 barrier();

10 } else {
11 STORE_SHARED(rcu_reader.ctr, tmp + RCU_NEST_COUNT);
12 }
13 }
14
15 static inline void rcu_read_unlock(void)
16 {
17 barrier();
18 STORE_SHARED(rcu_reader.ctr,
19 rcu_reader.ctr - RCU_NEST_COUNT);
20 }

Fig. 11. RCU Read Side Using Signals

1 void synchronize_rcu(void)
2 {
3 mutex_lock(&rcu_gp_lock);
4 force_mb_all_threads();
5 update_counter_and_wait();
6 barrier();
7 update_counter_and_wait();
8 force_mb_all_threads();
9 mutex_unlock(&rcu_gp_lock);

10 }

Fig. 12. RCU Update Side Using Signals

violation of RCU’s semantics.

The extra overhead of a second grace-period phase is not
regarded as a serious drawback since it affects only updaters,
not readers. The overhead of the read-side memory barriers
is more worrisome; the next section shows how it can be
eliminated.

E. Low-Overhead RCU Via Signal Handling

On common multiprocessor hardware, the largest source of
read-side overhead for general-purpose RCU is the memory
barriers. One novel way to eliminate these barriers is to send
POSIX signals from the update-side primitives. An unexpected
but quite pleasant surprise is that this approach results in
relatively simple read-side primitives. In contrast, those of
older versions of the Linux kernel’s preemptible RCU were
notoriously complex [31].

The read-side primitives shown in Figure 11 are identical
to those in Figure 9, except that lines 9 and 17 replace the
memory barriers with compiler directives that suppress code-
motion optimizations. The structures, variables, and constants
are identical to those in Figures 5 and 9. As with the previous
two implementations, bothrcu_read_lock() andrcu_-
read_unlock() are wait-free.

The synchronize_rcu() primitive shown in Figure 12
is similar to that in Figure 10, the only changes being in
lines 3–4 and 8–9. Instead of executing a memory barrier
local to the current thread, this implementation forces all
threads to execute a memory barrier usingforce_mb_-
all_threads() , and the two calls to this new function are
moved inside the locked region because of the need to iterate

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 11

1 static void force_mb_all_threads(void)
2 {
3 struct rcu_reader * index;
4
5 list_for_each_entry(index, ®istry, node) {
6 STORE_SHARED(index->need_mb, 1);
7 smp_mb();
8 pthread_kill(index->tid, SIGRCU);
9 }

10 list_for_each_entry(index, ®istry, node) {
11 while (LOAD_SHARED(index->need_mb))
12 msleep(1);
13 }
14 smp_mb();
15 }
16
17 static void sigurcu_handler(int signo,
18 siginfo_t * siginfo,
19 void * context)
20 {
21 smp_mb();
22 STORE_SHARED(rcu_reader.need_mb, 0);
23 smp_mb();
24 }

Fig. 13. RCU Signal Handling for Updates

over the thread registry, which is protected byrcu_gp_-
lock . The update_counter_and_wait() and rcu_-
gp_ongoing() routines are identical to those in Figure 10
and are therefore omitted.

Figure 13 shows the signal-handling functionsforce_-
mb_all_threads() and sigurcu_handler() .9 Of
course, these signals must be used carefully to avoid de-
stroying the readers’ wait-free properties, hence the serializa-
tion of synchronize_rcu() . With simple batching tech-
niques, concurrent invocations ofsynchronize_rcu()
could share a single RCU grace period.

The force_mb_all_threads() function is invoked
from synchronize_rcu() . It ensures a memory barrier is
executed on each running thread by sending a POSIX signal
to all threads and then waiting for each to respond. As shown
in Appendix C, this has the effect of promoting compiler-
ordering directives such asbarrier() to full memory
barriers, while allowing reader threads to avoid the overhead of
memory barriers when they are not needed. An initial iteration
over all threads sets eachneed_mb per-thread variable to
1, ensures that this assignment will be seen by the signal
handler, and sends a POSIX signal. A second iteration then
rescans the threads, waiting until each one has responded
by setting itsneed_mb per-thread variable back to zero.10

Because some versions of some operating systems can lose
signals, a production-quality implementation will resendthe
signal if a response is not received in a timely fashion. Finally,
there is a memory barrier to ensure that the signals have been
received and acknowledged before later operations that might
otherwise destructively interfere with readers.

9Some operating systems provide a facility to flush CPU write buffers for
all running threads in a given process. Such a facility, where available, can
replace the signals.

10The thread-list scans here and in Figures 8 and 10 are protected byrcu_-
gp_lock . Since the thread-registry list is read-mostly (it is updated only
by rcu_register_thread() and rcu_unregister_thread()), it
would appear to be a good candidate for RCU protection. Exercise for the
reader: Determine what changes to the implementation would be needed to
carry this out.

1 void call_rcu(struct rcu_head * head,
2 void (* func)(struct rcu_head * head))
3 {
4 head->func = func;
5 head->next = NULL;
6 enqueue(head, &rcu_data);
7 }
8
9 void call_rcu_cleanup(void)

10 {
11 struct rcu_head * next;
12 struct rcu_head * wait;
13
14 for (;;) {
15 wait = dequeue_all(&rcu_data);
16 if (wait) {
17 synchronize_rcu();
18 while (wait) {
19 next = wait->next;
20 wait->func(wait);
21 wait = next;
22 }
23 }
24 msleep(1);
25 }
26 }

Fig. 14. Avoiding Update-Side Blocking by RCU

The signal handler runs in the context of a reader thread
in response to the signal sent in line 8. Thissigurcu_-
handler() function executes a pair of memory barriers
enclosing an assignment of itsneed_mb per-thread variable
to zero. The effect is to place a full memory barrier at the
point in the receiver’s code that was interrupted by the signal,
preventing the CPU from reordering memory references across
that point.

A proof of correctness for this implementation is the
subject of another paper [23]. Of course, as with the other
two RCU implementations, this implementation’ssynchro-
nize_rcu() primitive is blocking. The next section shows
a way to provide non-blocking RCU updates.

F. Non-Blocking RCU Updates

Although some algorithms use RCU as a first-class tech-
nique, RCU is often used only to defer memory reclamation. In
these situations, given sufficient memory,synchronize_-
rcu() need not block the update itself, just as automatic
garbage collectors need not block non-blocking algorithms.
The functions detailed here can be used to perform batched
RCU callback execution, allowing multiple callbacks to exe-
cute after a grace period has passed.

One way of accomplishing this is shown in Figure 14, which
implements the asynchronouscall_rcu() primitive found
in the Linux kernel. The function initializes an RCU callback
structure and uses a non-blocking enqueue algorithm [32]
to add the callback to thercu_data list. Given that the
call_rcu() function contains but two simple (and therefore
wait-free) assignment statements and an invocation of the
non-blockingenqueue() function,call_rcu() is clearly
non-blocking. Systems providing an atomic swap instruction
can implement a wait-freecall_rcu() via the wait-free
enqueue algorithm used by some queued locks [33].

A separate thread would remove and invoke these callbacks
after a grace period has elapsed, by calling thecall_rcu_-
cleanup shown in Figure 14. On each pass through the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 12

main loop, the function uses a (possibly blocking) dequeue
algorithm to remove all elements from thercu_data list en
masse. If any elements were present, it waits for a grace period
to elapse and then invokes all the RCU callbacks dequeued
from the list. Finally, line 24 blocks for a short period to
allow additional RCU callbacks to be enqueued. The longer
line 24 waits, the more RCU callbacks will accumulate on the
rcu_data list; this is a classic memory/CPU trade-off, with
longer waits allowing more memory to be occupied by RCU
callbacks but decreasing the per-callback CPU overhead.

Of course, the use ofsynchronize_rcu() causes
call_rcu_cleanup() to be blocking, so it should be
invoked in a separate thread from the updaters. However, if the
synchronization mechanism used to coordinate RCU updates
is non-blocking then the updater code paths will execute
two non-blocking code sequences in succession (the update
and call_rcu()), and will therefore themselves be non-
blocking.

V. EXPERIMENTAL RESULTS

This section presents benchmarks comparing the RCU
mechanisms described in this paper to each other, to pthread
mutexes, to pthread reader-writer locks, and to per-thread
mutexes. The per-thread mutex approach uses one mutex per
reader thread so that updater threads take all the mutexes,
always in the same order, to exclude all readers. This approach
ensures reader cache locality at the expense of slower write-
side locking [34]. Section V-A examines read-side scalability,
Section V-B discusses the effect on the read-side primitives
of varying the critical-section duration, Section V-C presents
the impact of updates on read-side performance, and finally
Section V-D compares update-side throughput. The goal is to
identify clearly the situations in which RCU outperforms the
classic locking solutions found in existing applications.

The machines used to run the benchmarks are an 8-core
Intel Core2 Xeon E5405 clocked at 2.0 GHz and a 64-core
IBM PowerPC POWER5+ clocked at 1.9 GHz. Each core of
the PowerPC machine has 2 hardware threads. To eliminate
hardware-thread-level contention for per-core resources, we
run our benchmarks using only one hardware thread on each
of the 64 cores.

The mutex and reader-writer lock implementations used for
comparison are the standard pthread implementations from the
GNU C Library 2.7 for 64-bit Intel and GNU C Library 2.5
for 64-bit PowerPC.

STM (Software Transactional Memory) is not included
in these comparisons because the jury is still out on STM
practicality [35]. STM treats concurrent reads and writes to the
same variable as conflicts, requiring frequent conflict checks,
in turn degrading reader performance and scalability. In con-
trast, Figures 20, 21, 22, and 23 will show that RCU’s non-
conflicting concurrent reads and writes minimize read over-
head while maintaining extremely high read scalability, even
in the presence of heavy write workloads. Researchers have
improved STM’s read-side performance and scalability [36],
albeit in some cases by placing the burden of instrumentation
and privatization on the developer [37]. HTM (Hardware

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 9e+09

 0 10 20 30 40 50 60 70

N
um

be
r

of
 r

ea
ds

 /
se

co
nd

Number of cores

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread mutex
pthread reader-writer lock

Fig. 15. Read-Side Scalability of Various SynchronizationPrimitives, 64-core
POWER5+

Transactional Memory) [38, 39, 40] is likely to be more
scalable than STM; unfortunately, no system supporting HTM
was available for this study.

A. Read-Side Scalability

Figure 15 presents a read-side scalability comparison of the
RCU mechanisms and the locking primitives on the PowerPC.
The goal of this test is to measure each synchronization
technique’s performance in read-only scenarios, varying the
number of CPUs. Each test ran on between 1 and 64 readers
for 10 seconds, each taking a read lock, reading one variable,
then releasing the lock in a tight loop with no updater. The
figure shows that RCU and per-thread mutexes achieve linear
scalability, courtesy of the perfect memory locality attained
by these approaches. QSBR is fastest, followed by signal-
based RCU, general-purpose RCU and per-thread mutex, each
adding a constant per-CPU overhead. The Xeon behaves
similarly and is not shown here.

Note that the performance of the QSBR and the signal-
based-RCU implementations are more than an order of mag-
nitude greater than that of the per-thread mutex. Because the
performance of the per-thread mutex corresponds to that of
perfect-locality uncontended locking, these two variantsof
RCU are therefore more than an order of magnitude faster than
uncontended locking. Even the slower general-purpose RCU
implementation is more than twice as fast as uncontended
locking, making use of RCU extremely attractive for read-
mostly data structures.

In Figure 15, the traces for pthread mutex and pthread
reader-writer locking cannot be easily distinguished fromthe
x axis. Figure 16 therefore displays only these two traces,
showing their well-known negative scalability.

B. Read-Side Critical Section Duration

Figure 17 presents the number of reads per second as
a function of the duration in nanoseconds of the read-side
critical sections. This benchmark is performed with 8 reader
threads acquiring the read lock, reading the data structure,
busy-waiting for the appropriate delay, and releasing the lock.
There is no active updater.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 13

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 10 20 30 40 50 60 70

N
um

be
r

of
 r

ea
ds

 /
se

co
nd

Number of cores

pthread mutex
pthread reader-writer lock

Fig. 16. Read-Side Scalability of Mutex and Reader-Writer Lock, 64-core
POWER5+

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

N
um

be
r

of
 r

ea
ds

 /
se

co
nd

Read-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 17. Impact of Read-Side Critical Section Length on 8-core Xeon,
Logarithmic Scale

The number of reads per second is inversely proportional
to the sum of the overheads of the read-side primitives and
the duration of the read-side critical section. As the critical-
section duration increases, the number of reads per second
asymptotically approaches the inverse of this duration. The
logarithmic axes of Figures 17–19 therefore cause the slopes
of the curves to approach−1. The region where each curve
nears its asymptote is closely related to the overhead of the
corresponding read-side mechanism.

Thus on the Xeon, QSBR and signal-based RCU have read-
side locking overheads at least a factor of 5 better than general-
purpose RCU, which in turn is about a factor of 2 better than
per-thread mutexes, which in turn is about a factor of 20 better
than reader-writer locks (the curves near their asymptotes
at 50, 250, 500, and 10,000 nanoseconds respectively). For
read-side critical sections longer than 1000 nanoseconds,the
difference in overhead between RCU and per-thread mutexes
is negligible. The pthread mutex asymptote is lower than the
others, because the single mutex can be held by only one
reader at a time.

Corresponding curves for the POWER5+ machine appear
in Figures 18 and 19. The difference between them is that
Figure 19 uses 64 reader threads and 64 cores, whereas
Figure 18 uses only 8 threads bound to 8 cores spaced with a
stride of 8. Cores close to each other share a common L2 and
L3 cache on the POWER5+, which causes reader-writer lock
and pthread mutex to be slightly faster at lower stride values
(not shown). This has no significant effect on our results.

Comparing Figures 18 and 19 shows that the read-side
overheads of both the reader-writer lock and the pthread mutex

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 r

ea
ds

 /
se

co
nd

Read-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 18. Impact of Read-Side Critical Section Length, 8 Reader Threads on
64-core POWER5+, Logarithmic Scale

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0.1 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 r

ea
ds

 /
se

co
nd

Read-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 19. Impact of Read-Side Critical Section Length, 64 Reader Threads
on 64-core POWER5+, Logarithmic Scale

schemes are about 10 times larger when running on 64 cores
than on 8 cores (curves near their asymptotes at 10,000 and
2500 nanoseconds instead of 1000 and 250 respectively). This
effect is caused by interprocessor cache-line-exchange delays
and nonlinear scaling of lock-contention times. By contrast,
the read-side overheads of the RCU and per-thread mutex
schemes are independent of the number of CPUs, and on this
machine, the difference in overhead between these schemes is
negligible for critical sections longer than 250 nanoseconds.

Two interesting features of the pthread reader-writer lock
trace in Figures 17, 18, and 19 deserve explanation. The first
is that the performance of pthread reader-writer locking is
inferior to that of pthread mutex for small read-side critical-
section lengths, which is due to the slightly higher overhead
of reader-writer locking compared to that of pthread mutex’s
exclusive locking. The second is the slight rise in throughput
for reader-writer locking just prior to joining the asymptote,
which is due to decreased memory contention on the data
structure implementing the reader-writer lock.

C. Effects of Updates on Read-Side Performance

The results in Sections V-A and V-B clearly show RCU’s
read-side performance advantages. However, RCU updates can
incur performance penalties due to the overhead of grace
periods and the resulting decreases in locality of reference.
This section therefore measures these performance penalties.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 14

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 10 100 1000 10000 100000 1e+06 1e+07

R
ea

ds
/s

Updates/s

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 20. Update Overhead, 8-core Intel Xeon, Logarithmic Scale

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 10 100 1000 10000 100000 1e+06

R
ea

ds
/s

Updates/s

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 21. Update Overhead, 64-core POWER5+, Logarithmic Scale

Figure 20 presents the impact of update frequency on read-
side performance for the various locking primitives on the
Intel Xeon. It is performed by running 4 reader and 4 updater
threads and varying the delay between updates. The updaters
for the per-thread mutex, mutex and reader-writer lock ex-
periments store two different integer values successivelyto
the same variable. Readers accessing the variable twice while
holding a lock are guaranteed to observe a single, unchanged
value. To provide the same effect, the RCU updaters allocate
a new structure, store an integer in this newly allocated
structure, and then atomically exchange the pointer to the
new structure with the old pointer currently being accessed
by readers. The RCU experiments store only a single integer
value in each structure; we verified that successively storing
two values to the same memory location had no significant
impact on performance. Memory reclamation is batched using
an rcu_defer() mechanism; this mechanism uses fixed-
size per-thread queues to hold memory reclamation requestsso
that an updater incurs a grace period no more than once every
4096 updates. A grace period is of course required whenever
an updater finds its queue is full. In addition, a separate worker
thread empties the queues every 100 milliseconds to providean
upper bound for reclamation delay. Figure 21 shows the result
of this same benchmark running on a 64-core POWER5+, with
32 reader and 32 updater threads.

Interestingly, on such a workload with 4 tight-loop readers,
mutexes uniformly outperform reader-writer locking. Further-
more, this particular implementation of reader-writer locking

 1e+07

 1e+08

 1e+09

 1e+10

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

R
ea

ds
/s

Updates/s

Ideal QSBR
Ideal Signal-based RCU

Ideal General-purpose RCU
QSBR

Signal-based RCU
General-purpose RCU

Fig. 22. Comparison of Pointer Exchange and Ideal RCU Update Overhead,
8-core Intel Xeon, Logarithmic Scale

 1e+07

 1e+08

 1e+09

 1e+10

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

R
ea

ds
/s

Updates/s

Ideal QSBR
Ideal Signal-based RCU

Ideal General-purpose RCU
QSBR

Signal-based RCU
General-purpose RCU

Fig. 23. Comparison of Pointer Exchange and Ideal RCU Update Overhead,
64-core POWER5+, Logarithmic Scale

eventually suffers from reader starvation.
The RCU read-side performance shown in Figures 20

and 21 trails off at high update rates. In principle this could be
caused either by the overhead of quiescent-state detectionon
the write side or by cache interference resulting from the data
pointer exchanges. To determine the cause, we defined ideal
RCU performance to include only the overheads of the grace
periods, and compared this ideal performance to that shown in
the earlier figures. We generated the ideal RCU workload by
removing the memory allocation and pointer exchanges from
the update-side, but we kept thercu_defer() mechanism
in order to take into account the overhead of waiting for quies-
cent states. Figures 22 and 23 present the resulting comparison,
clearly showing that the non-linear read-side performanceis
caused by the pointer exchanges rather than the grace periods.

Figures 24 and 25 present the impact of the update-side
critical-section length on read-side performance. These tests
are performed with 4 reader and 4 writer threads on the Xeon,
and with 32 reader and 32 writer threads on the POWER5+.
Readers run as quickly as possible, with no delay between
reads. Writer iterations are separated by an arbitrarily-sized
delay consisting of 10 iterations of a busy loop, amounting
to 55 nanoseconds for the Intel Xeon (due to the “rep; nop”
instruction recommended for x86 busy-waiting loops) and
2.0 nanoseconds for the POWER5+.

With RCU approaches, the read-side performance is largely
unaffected by updates. Slight variations can be seen on a linear

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 15

 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

N
um

be
r

of
 r

ea
ds

 /
se

co
nd

Write-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 24. Impact of Update-Side Critical Section Length on Read-Side, 8-core
Intel Xeon, Logarithmic Scale

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10

 0.1 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 r

ea
ds

 /
se

co
nd

Write-side C.S. length (in nanoseconds)

QSBR
Signal-based RCU

General-purpose RCU
Per-thread mutex

pthread reader-writer lock
pthread mutex

Fig. 25. Impact of Update-Side Critical Section Length on Read-Side, 64-
core POWER5+, Logarithmic Scale

scale (not shown here), but these are caused primarily by CPU
affinity of readers and writers, which influences the sharingof
caches.

Unlike RCU, per-thread mutex readers are significantly
impacted by long write-side critical sections. Again refer-
ring to Figures 24 and 25, read-side performance degrades
significantly beyond a write-side critical-section lengthof
5,000 nanoseconds on both the Xeon and the POWER5+. On
the Xeon, the pthread reader-writer lock and pthread mutex
degrade catastrophically starting at 250 to 750 nanoseconds
write-side critical-section length. In addition, these schemes
show signs of starvation in the presence of long write-side
critical sections. We saw instances of both reader starvation
(the dips in Figure 25) and writer starvation (not shown);
apparently the class which owns the lock first (either readers
or writers) tends to keep it for the whole test duration. This
is likely caused by the brevity of the delays between reads
and updates, which favors the previous lock owner due to
unfairness in the pthread implementations.

D. Update Throughput

Maximum update rates can be inferred from the X-axis of
Figures 20 and 21 by selecting the rightmost point of a given
trace. For example, Figure 20 shows that RCU attains 2 million
updates per second, while per-thread locks manages but 0.1
million updates per second. A key reason for this result is that

RCU readers do not block RCU writers. Furthermore, although
waiting for an RCU grace period can incur significant latency,
it does not necessarily degrade updater bandwidth because in
production-quality implementations, RCU grace periods can
overlap in time.

In Figure 21, the mutex-based benchmark performance
starts degrading at 30,000 updates per second with 32 up-
dater threads, while RCU easily exceeds 100,000 updates
per second. These results clearly show the need to partition
data in order to attain good performance on larger systems.
Benchmarks running only 4 updater threads on the 64-core
system show similar effects (data not presented). Figure 20
shows that update overhead remains reasonably constant even
at higher update frequency for 4 updater threads on the Xeon.
Therefore, as the number of concurrent updaters increases,
mutex behavior seems to depend on the architecture and on
the specific GNU C Library version.

In Figure 21, the reader-writer lock attains only 175 updates
per second, indicating that updaters are starved by readers.
Per-thread locks attain only 10,000 updates per second. Thus,
locking significantly limits update rate relative to RCU.

These results show that RCU QSBR and general-purpose
RCU attain the highest update rates for partitionable read-
mostly data structures (where “read mostly” means more than
90% of accesses are reads) even compared to uncontended
locking. This is attributed to the lower performance overhead
for exchanging a pointer compared to the multiple atomic
operations and memory barriers implied by acquiring and
releasing a lock. RCU is sometimes used even for update-
heavy workloads, due to the wait-free and deadlock-immune
properties of its read-side primitives. The performance char-
acteristics of RCU for update-heavy workloads have been
presented elsewhere [41].

VI. CONCLUSIONS

We have presented a set of RCU implementations covering a
wide spectrum of application architectures. QSBR shows the
best performance characteristics, but severely constrains the
application architecture by requiring that each reader thread
periodically announce that it is in a quiescent state. User-
level QSBR imposes two additional requirements: (1) any lock
that is held across a grace period must be acquired within an
extended quiescent state, and (2) if the handler for a given
signal contains RCU read-side critical sections, then thatsignal
must be disabled across all extended quiescent states. Inter-
estingly enough, kernel-level QSBR implementations avoid
these two requirements because of QSBR’s integration with
the scheduler and interrupt handlers.

Signal-based RCU performs almost as well as QSBR, but
requires reserving a POSIX signal. Unlike the other two,
general-purpose RCU incurs significant read-side overhead.
However it minimizes constraints on application architecture,
requiring only that each thread invokes an initialization func-
tion before entering its first RCU read-side critical section.

Benchmarks demonstrate linear read-side scalability of
RCU and per-thread locking. They also show that there is
a read-side critical-section duration beyond which reader-
writer locking, RCU, and per-thread locking perform similarly,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 16

and that this duration increases with the number of cores.
These benchmarks also show that by performing grace-period
detection in batch, RCU attains better update rates than reader-
writer locking, per-thread locking, and exclusive lockingon
read-mostly data structures. It is possible to further decrease
RCU update-side overhead by designing data structures pro-
viding good update cache locality.

ACKNOWLEDGEMENTS

We owe thanks to Maged Michael, Etienne Bergeron,
Alexandre Desnoyers, Michael Stumm, Balaji Rao, Tom Hart,
Robert Bauer, Dmitriy V’jukov, and the anonymous reviewers
for many helpful suggestions. We are indebted to the Linux
community for their use of and contributions to RCU and
to Linus Torvalds for sharing his kernel with us all. We are
grateful to Kathy Bennett for her support of this effort.

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0719851. This
work is funded by Google, Natural Sciences and Engineering
Research Council of Canada, Ericsson and Defence Research
and Development Canada.

LEGAL STATEMENT

This work represents the views of the authors and does not
necessarily represent the view of EfficiOS, Ecole Polytech-
nique de Montreal, Harvard, IBM, or Portland State University.

Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trade-

marks or service marks of others.

REFERENCES

[1] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm,
“Tornado: Maximizing locality and concurrency in a
shared memory multiprocessor operating system,” in
Proceedings of the 3rd Symposium on Operating System
Design and Implementation, New Orleans, LA, February
1999, pp. 87–100.

[2] J. P. Hennessy, D. L. Osisek, and J. W. Seigh II, “Passive
serialization in a multitasking environment,” US Patent
and Trademark Office, Washington, DC, Tech. Rep. US
Patent 4,809,168 (lapsed), February 1989.

[3] V. Jacobson, “Avoid read-side locking via delayed free,”
September 1993, private communication.

[4] A. John, “Dynamic vnodes – design and implementa-
tion,” in USENIX Winter 1995. New Orleans, LA:
USENIX Association, January 1995, pp. 11–23.

[5] P. E. McKenney and J. D. Slingwine, “Read-copy update:
Using execution history to solve concurrency problems,”
in Parallel and Distributed Computing and Systems, Las
Vegas, NV, October 1998, pp. 509–518.

[6] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. Morris, and N. Zeldovich, “An
analysis of Linux scalability to many cores,” in9th

USENIX Symposium on Operating System Design and
Implementation. Vancouver, BC, Canada: USENIX,
October 2010, pp. 1–16.

[7] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole,
“Performance of memory reclamation for lockless syn-
chronization,” J. Parallel Distrib. Comput., vol. 67,
no. 12, pp. 1270–1285, 2007.

[8] K. A. Fraser, “Practical lock-freedom,” Ph.D. disserta-
tion, King’s College, University of Cambridge, 2003.

[9] K. Fraser and T. Harris, “Concurrent programming with-
out locks,”ACM Trans. Comput. Syst., vol. 25, no. 2, pp.
1–61, 2007.

[10] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N.
Scherer III, and N. Shavit, “A lazy concurrent list-based
set algorithm,” inPrinciples of Distributed Systems, 9th
International Conference OPODIS 2005. Springer-
Verlag, 2005, pp. 3–16.

[11] H. T. Kung and Q. Lehman, “Concurrent maintenance
of binary search trees,”ACM Transactions on Database
Systems, vol. 5, no. 3, pp. 354–382, September 1980.

[12] P. Becker, “Working draft, standard for programming
language C++,” August 2010, [Online]. Available:
http://open-std.org/jtc1/sc22/wg21/docs/papers/2010/
n3126.pdf.

[13] D. Guniguntala, P. E. McKenney, J. Triplett, and
J. Walpole, “The read-copy-update mechanism for sup-
porting real-time applications on shared-memory multi-
processor systems with Linux,”IBM Systems Journal,
vol. 47, no. 2, pp. 221–236, May 2008.

[14] P. E. McKenney and J. Walpole. (2007, December)
What is RCU, fundamentally? [Online]. Available: Linux
Weekly News, http://lwn.net/Articles/262464/.

[15] M. Herlihy, “Implementing highly concurrent data ob-
jects,” ACM Transactions on Programming Languages
and Systems, vol. 15, no. 5, pp. 745–770, Nov. 1993.

[16] R. K. Treiber, “Systems programming: Coping with
parallelism,” April 1986, RJ 5118.

[17] D. Sarma and P. E. McKenney, “Making RCU safe
for deep sub-millisecond response realtime applications,”
in Proceedings of the 2004 USENIX Annual Technical
Conference (FREENIX Track). USENIX Association,
June 2004, pp. 182–191.

[18] P. E. McKenney. (2008, January) What is RCU? part 2:
Usage. [Online]. Available: Linux Weekly News, http:
//lwn.net/Articles/263130/.

[19] ——, “Exploiting deferred destruction: An analysis of
read-copy-update techniques in operating system ker-
nels,” Ph.D. dissertation, OGI School of Science and
Engineering at Oregon Health and Sciences University,
2004, [Online]. Available: http://www.rdrop.com/users/
paulmck/RCU/RCUdissertation.2004.07.14e1.pdf.

[20] P. E. McKenney and D. Sarma, “Towards hard real-
time response from the Linux kernel on SMP hard-
ware,” in linux.conf.au 2005, Canberra, Australia, April
2005, [Online]. Available: http://www.rdrop.com/users/
paulmck/RCU/realtimeRCU.2005.04.23a.pdf.

[21] A. Arcangeli, M. Cao, P. E. McKenney, and D. Sarma,
“Using read-copy update techniques for System V
IPC in the Linux 2.5 kernel,” inProceedings of the
2003 USENIX Annual Technical Conference (FREENIX
Track). USENIX Association, June 2003, pp. 297–310.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 17

[22] M. Greenwald and D. R. Cheriton, “The synergy be-
tween non-blocking synchronization and operating sys-
tem structure,” inProceedings of the Second Symposium
on Operating Systems Design and Implementation. Seat-
tle, WA: USENIX Association, Oct. 1996, pp. 123–136.

[23] M. Desnoyers, “Low-impact operating system tracing,”
Ph.D. dissertation, Ecole Polytechnique de Montréal,
December 2009, [Online]. Available: http://www.lttng.
org/pub/thesis/desnoyers-dissertation-2009-12.pdf.

[24] P.-M. Fournier, M. Desnoyers, and M. R. Dagenais,
“Combined tracing of the kernel and applications with
LTTng,” in Proceedings of the 2009 Linux Symposium,
Jul. 2009.

[25] T. Jinmei and P. Vixie, “Implementation and evaluation
of moderate parallelism in the BIND9 DNS server,” in
Proceedings of the annual conference on USENIX Annual
Technical Conference, Boston, MA, February 2006, pp.
115–128.

[26] Programming languages — C, ISO WG14 Std., May
2005, [Online]. Available: http://www.open-std.org/jtc1/
sc22/wg14/www/docs/n1124.pdf.

[27] Guide to Parallel Programming, Sequent Computer Sys-
tems, Inc., 1988.

[28] M. Desnoyers, “[RFC git tree] userspace RCU (urcu) for
Linux,” February 2009, [Online]. Available: http://lkml.
org/lkml/2009/2/5/572, http://lttng.org/urcu.

[29] M. Herlihy, “Wait-free synchronization,”ACM TOPLAS,
vol. 13, no. 1, pp. 124–149, January 1991.

[30] P. E. McKenney, “Using a malicious user-level RCU to
torture RCU-based algorithms,” inlinux.conf.au 2009,
Hobart, Australia, January 2009, [Online]. Available:
http://www.rdrop.com/users/paulmck/RCU/urcutorture.
2009.01.22a.pdf.

[31] ——. (2007, October) The design of preemptible read-
copy-update. [Online]. Available: Linux Weekly News,
http://lwn.net/Articles/253651/.

[32] M. M. Michael and M. L. Scott, “Nonblocking algo-
rithms and preemption-safe locking on multiprogrammed
shared memory multiprocessors,”J. Parallel Distrib.
Comput., vol. 51, no. 1, pp. 1–26, 1998.

[33] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiproces-
sors,” Transactions of Computer Systems, vol. 9, no. 1,
pp. 21–65, February 1991.

[34] W. C. Hsieh and W. E. Weihl, “Scalable reader-writer
locks for parallel systems,” inProceedings of the 6th

International Parallel Processing Symposium, Beverly
Hills, CA, USA, March 1992, pp. 216–230.

[35] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu,
S. Chiras, and S. Chatterjee, “Software transactional
memory: Why is it only a research toy?”ACM Queue,
September 2008.

[36] L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec:
streamlining STM by abolishing ownership records,” in
PPOPP, 2010, pp. 67–78.

[37] A. Dragovejic, P. Felber, V. Gramoli, and R. Guerraoui,
“Why STM can be more than a research toy,” Febru-
ary 2010, [Online]. Available: http://infoscience.epfl.ch/

record/144052/files/paper.pdf.
[38] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C.

Minh, W. Baek, C. Kozyrakis, and K. Olukotun, “A scal-
able, non-blocking approach to transactional memory,” in
HPCA Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer Architecture,
2007, pp. 97–108.

[39] S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar,
and R. Balasubramonian, “Scalable and reliable commu-
nication for hardware transactional memory,” inPACT
Proceedings of the 17th International Conference on Par-
allel Architectures and Compilation Techniques, 2008,
pp. 144–154.

[40] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early expe-
rience with a commercial hardware transactional memory
implementation,” inFourteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’09), Washington, DC,
USA, March 2009, pp. 157–168.

[41] P. E. McKenney, “RCU vs. locking performance on dif-
ferent CPUs,” inlinux.conf.au, Adelaide, Australia, Jan-
uary 2004, [Online]. Available: http://www.rdrop.com/
users/paulmck/RCU/lockperf.2004.01.17a.pdf.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 18

Mathieu Desnoyers is President &
Founder of EfficiOS. He maintains the
LTTng project and the Userspace RCU
library. His research interests are in per-
formance analysis tools, operating sys-
tems, scalability and real-time concerns.
He holds a Ph.D. degree in Computer
Engineering from Ecole Polytechnique de
Montreal (2010).

Paul E. McKenney is an Distin-
guished Engineer at IBM. He main-
tains the Linux-kernel RCU implemen-
tations, and his primary research interest
is shared-memory parallel software. He
holds a Ph.D. in computer science and
engineering from Oregon Health and Sci-
ences University (2004).

Alan S. Stern received a Ph.D. in
Mathematical Logic from the University
of California at Berkeley in 1984. His
current position at the Rowland Insti-
tute at Harvard is Staff Computational
Scientist. He is actively involved with
Linux kernel development, particularly in
the USB and Power Management subsys-
tems.

Michel R. Dagenais is professor at
Ecole Polytechnique de Montreal, in the
Computer and Software Engineering De-
partment. His research interests include
several aspects of multi-core distributed
systems with emphasis on Linux and
open systems. His group has made several
original contributions to Linux.

Jonathan Walpole is a Full Professor
in the Computer Science Department at
Portland State University. His research in-
terests are in operating systems, and scal-
able concurrent programming. He holds
B.Sc. and Ph.D. degrees in Computer
Science from Lancaster University, UK
(1984 and 1987).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 19

APPENDIX

A. Quiescent-State-Based Reclamation RCU

This appendix presents a semi-formal verification that the
QSBR implementation satisfies RCU’s grace-period guarantee.
Unfortunately it is not possible to prove this outright, owing
to the 32-bit wraparound failure discussed in Section IV-C.
We will thereforeassumethat such failures don’t occur.

Theorem: Assuming that threads are never preempted for
too long (see below), in any execution of a program using the
QSBR implementation, the grace-period guarantee (Formula1
in Section II-D1) is satisfied.

Proof: Given QSBR’s implementation, we focus onac-
tive segments: the periods between quiescent states. More
precisely, an active segment is a sequence of instruc-
tions bounded at the start byrcu_quiescent_state() ,
rcu_thread_online() , or lines 12–15 ofsynchro-
nize_rcu() in Figure 8; bounded at the end byrcu_-
quiescent_state() , rcu_thread_offline() , or
lines 5–8 ofsynchronize_rcu() in Figure 8; and contain-
ing no other references torcu_reader.ctr . Every read-
side critical section is part of an active segment.

Execution of thekth active segment in threadT (comprising
statementsRk,i together with some of the bounding state-
ments) can be represented as a sequence of labelled pseudo-
code instructions:

Ld(xk): xk = rcu_gp_ctr
St(xk): rcu_reader.ctr T = xk

MB0
k: smp_mb()

Rk,0; Rk,1; Rk,2; . . .
MB1

k: smp_mb()
Ld(yk): yk = (either rcu_gp_ctr or 0)
St(yk): rcu_reader.ctr T = yk

Here xk and yk are intermediate values andrcu_-
reader.ctr T refers to T ’s instance of the per-thread
rcu_reader structure. The Ld(yk) line sets yk to
rcu_gp_ctr if the active segment ends withrcu_quies-
cent_state() (in which caseyk is xk+1, as the call will
also mark the beginning of the next active segment); otherwise
it setsyk to 0.

Execution of update_counter_and_wait() is of
course serialized by thercu_gp_lock mutex. Thenth oc-
currence of this routine, together with the statements preceding
(Mn,i) and following it (Dn,j), can be expressed so:

Mn,0; Mn,1; Mn,2; . . .
MB2

n: smp_mb()
. . .

Ld(zn): zn = rcu_gp_ctr + 2
St(zn): rcu_gp_ctr = zn

. . .
Ld(vn): vn =rcu_reader.ctr T

Asn: assert(vn = 0 or vn = zn)
. . .

MB3
n: smp_mb()

Dn,0; Dn,1; Dn,2; . . .
Several things are omitted from this summary, including
the list_for_each_entry() loop iterations for threads

other thanT and all iterations of thewhile loop other
than the last (the assertion Asn holds precisely because this
is the last loop iteration). Both here and above, the use of
barrier() , LOAD_SHARED(), and STORE_SHARED()
primitives forces the compiler to generate the instructions in
the order shown. However the hardware is free to reorder them,
within the limits imposed by the memory barriers.

We number the grace periods starting from 1, letting St(z0)
stand for a fictitious instruction initializingrcu_gp_ctr
to 1 before the program starts. In this way each Ld(xk) is
preceded by some St(zn). Furthermore, because there are no
other assignments torcu_gp_ctr , it is easy to see that for
eachn, zn is equal to2n+ 1 truncated to the number of bits
in an unsigned long .

Our initial assumption regarding overly-long preemption
now amounts to the requirement that not too many grace
periods occur between each Ld(xk) and the following St(xk).
Grace periodsm throughn−1 occur during this interval when
Ld(xk) → St(zm) and Ld(vn−1) → St(xk) (recall that “→”
indicates that the statement on the left executes prior to that on
the right). Under such conditions we therefore requiren−m

to be sufficiently small that2(n −m + 1) does not overflow
an unsigned long and hencezm−1 6= zn.

Let us now verify the grace-period guarantee for a read-side
critical section occurring during threadT ’s active segmentk
and for grace periodn.

Case 1: St(zn) → Ld(xk). Since these two instructions both
accessrcu_gp_ctr , the memory barrier property for MB2n
and MB0k says thatMn,i → Rk,j for eachi, j. Thus Formula 1
in Section II-D1 holds because its left disjunct is true.

Case 2: Ld(vn) → St(xk). Since these two instructions both
accessrcu_reader.ctr T , the memory barrier property for
MB2

n and MB0k says thatMn,i → Rk,j for eachi, j. The rest
follows as in Case 1.

Case 3: St(yk) → Ld(vn). Since these two instructions both
accessrcu_reader.ctr T , the memory barrier property for
MB1

k and MB3n says thatRk,i → Dn,j for each i, j. Thus
Formula 1 holds because its right disjunct is true.

Case 4: None of Cases 1–3 above. Since cache coherence
guarantees that loads and stores from all threads to a given
variable are totally ordered, it follows that Ld(xk) → St(zn)
and St(xk) → Ld(vn) → St(yk). We claim that this case can-
not occur without violating our assumption about wraparound
failures. Indeed, suppose it does occur, and takem to be the
least index for which Ld(xk) → St(zm). Clearlym ≤ n.

Since St(zm−1) → Ld(xk) → St(zm), xk must be equal to
zm−1. Similarly, vn must be equal toxk. Sincezm−1 cannot
be 0, Asn implies thatzm−1 = zn, and sincem ≤ n, this is
possible only if2(n−m+ 1) overflows (and hencen > m).

Now consider grace periodn − 1. Since St(zm) pre-
cedes St(zn−1) we have Ld(xk) → St(zn−1), and since
Ld(vn−1) precedes Ld(vn) we also have Ld(vn−1) → St(yk).
If St(xk) → Ld(vn−1) then active segmentk and grace
period n − 1 would also fall under Case 4, implying that
zm−1 = zn−1, which is impossible becausezn−1 6= zn.
Hence we must have Ld(vn−1) → St(xk). But thenm andn
would violate our requirement on the number of grace periods
elapsing between Ld(xk) and St(xk). QED.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2010 20

B. General-Purpose RCU

This appendix presents a semi-formal verification that the
general-purpose implementation satisfies RCU’s grace-period
guarantee, assuming that read-side critical sections are not
nested too deeply.

Proof: Using the same notation as in Appendix A, execution
of thekth outermost read-side critical section in threadT can
be represented as follows:

xk,0 = rcu_gp_ctr
St(xk,0): rcu_reader.ctr T = xk,0

MB0
k: smp_mb()

{ Rk,0; Rk,1; Rk,2; . . .
St(xk,i): rcu_reader.ctr T = xk,i . . .}
MB1

k: smp_mb()
yk = rcu_reader.ctr T -

RCU_NEST_COUNT
St(yk): rcu_reader.ctr T = yk

Here xk,0 is the value read byLOAD_SHARED() in the
outermostrcu_read_lock() , xk,i for i > 0 corresponds
to the ith nested call by threadT to rcu_read_lock() or
rcu_read_unlock() in time order (the “{. . .}” notation
is intended to express that these calls are interspersed among
the Rk,i statements), andyk is the value in theSTORE_-
SHARED() call in thercu_read_unlock() that ends the
critical section. The memory barriers are present because this
is an outermost read-side critical section.

The nth occurrence ofsynchronize_rcu() , together
with the statements preceding and following it, can similarly
be expressed as:

Mn,0; Mn,1; Mn,2; . . .
MB2

n: smp_mb()
. . .

Tog0n: rcu_gp_ctr ˆ= RCU_GP_CTR_PHASE
. . .

Ld(v0n): v0n =rcu_reader.ctr T

As0n: assert(v0n’s nesting level is 0 or its
phase number agrees withrcu_gp_ctr)

. . .
Tog1n: rcu_gp_ctr ˆ= RCU_GP_CTR_PHASE

. . .
Ld(v1n): v1n =rcu_reader.ctr T

As1n: assert(v1n’s nesting level is 0 or its
phase number agrees withrcu_gp_ctr)

. . .
MB3

n: smp_mb()
Dn,0; Dn,1; Dn,2; . . .

As before, the assertions hold because these statements are
from the last iteration of thewhile loop for threadT . We
can now verify the grace-period guarantee forT ’s read-side
critical sectionk and for grace periodn.

Case 1: Ld(vmn) → St(xk,0), m = 0 or 1. Since these
instructions all accessrcu_reader.ctr T , the memory
barrier property for MB2n and MB0k says thatMn,i → Rk,j

for eachi, j. Thus Formula 1 in Section II-D1 holds because
its left disjunct is true.

Case 2: St(yk) → Ld(vmn), m = 0 or 1. Then the memory
barrier property for MB1k and MB3n says thatRk,i → Dn,j for

eachi, j. Thus Formula 1 holds because its right disjunct is
true.

Case 3: Neither of Cases 1–2 above. For eachm we must
have St(xk,0) → Ld(vmn) → St(yk); thereforev0n andv1n must
be equal toxk,i for some values ofi ≥ 0. We are assuming
that the maximum nesting level of read-side critical sections
does not exceed the 16-bit capacity ofRCU_NEST_MASK;
therefore eachxk,i has a nonzero nesting level and has the
same phase number asxk,0, and the same must be true of
v0n and v1n. However the phase number ofrcu_gp_ctr is
different in As0n and As1n, thanks to Tog1n. Hence As0n and
As1n cannot both hold, implying that this case can never arise.
QED.

C. Barrier Promotion Using Signals

This appendix discusses how the signal-based RCU im-
plementation is able to “promote” compiler barriers to full-
fledged memory barriers. A more accurate, if less dra-
matic, statement is that the combination ofbarrier() and
force_mb_all_threads() obeys a strong form of the
fundamental ordering property of memory barriers. Namely,
if one thread executes the statements

A0; A1; A2; . . . ; barrier() ; B0; B1; B2; . . . ;

and another thread executes the statements

C0; C1; C2; . . . ; force_mb_all_threads() ;
D0; D1; D2; . . . ;

then eitherAi → Dj (all i, j) or Ci → Bj (all i, j).
To see why, consider that thepthread_kill() call in
force_mb_all_threads() forces the first thread to in-
voke sigrcu_handler() at some place in its instruction
stream, either before all theBj or after all theAi (although
barrier() does not generate any executable code, it does
force the compiler to emit all the object code for theAi

instructions before any of theBj object code). Suppose
sigrcu_handler() is called after all theAi. Then the
first thread actually executes

A0; A1; A2; . . . ; smp_mb() ;
STORE_SHARED(rcu_reader.need_mb, 0) ;

Since the second thread executes

LOAD_SHARED(index->need_mb) ; . . . ;
smp_mb() ; D0; D1; D2; . . . ;

in its last loop iteration for the first thread and the following
statements, and since theLOAD_SHARED() sees the value
stored by theSTORE_SHARED(), it follows that Ai → Dj

for all i, j. The case wheresigrcu_handler() runs before
all theBj can be analyzed similarly.

