IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 1

User-Level Implementations of Read-Copy Update

Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel Rydbais and Jonathan Walpole

Abstract—Read-copy update (RCU) is a synchronization tech-
nique that often replaces reader-writer locking because RCU'’s
read-side primitives are both wait-free and an order of magnitude
faster than uncontended locking. Although RCU updates are
relatively heavy weight, the importance of read-side performane

typically more than an order of magnitude faster than un-
contended locking. RCU’s light-weight read paths suppoet t
increasing need to track read-mostly connectivity, hardwa
configuration, and security-policy data. Other mechanisms

is increasing as computing systems become more responsive tgNust be used to coordinate among multiple writers, for ex-

changes in their environments.

RCU is heavily used in several kernel-level environments.
Unfortunately, kernel-level implementations use facilities that
are often unavailable to user applications. The few prior user-
level RCU implementations either provided inefficient read-
side primitives or restricted the application architecture. This
paper fills this gap by describing efficient and flexible RCU
implementations based on primitives commonly available to user-
level applications.

Finally, this paper compares these RCU implementations with
each other and with standard locking, which enables choosing
the best mechanism for a given workload. This work opens the
door to widespread user-application use of RCU.

Index Terms—D.4.1.f Synchronization < D.4.1 Process Man-
agement < D.4 Operating Systems < D Software/Software
Engineering, D.4.1.g Threads< D.4.1 Process Management D.4
Operating Systems< D Software/Software Engineering, D.4.1.a
Concurrency < D.4.1 Process Managemeni D.4 Operating
Systems< D Software/Software Engineering

I. INTRODUCTION

ample locking, transactions, non-blocking synchronaatior
single designated updater thread.

Techniques similar to RCU have appeared in several
operating-system kernels [1, 2, 3, 4, 5], and, as shown in
Figure 1, RCU is heavily used in the Linux kernel [6].
One reason RCU is heavily used is that it eases lock-based
programming when the locks themselves are dynamically
created and destroyed, which occurs frequently in conotrre
programs. However, RCU is not heavily used in applica-
tions, in part because prior user-level RCU-like algorishm
severely constrained application design [7], incurredviiea
read-side overhead [8, 9], or relied on sequential comgigte
and garbage collection [10, 11]. The popularity of RCU in
operating-system kernels owes much to the fact that ker-
nels can accommodate the global constraints imposed by the
high-performance quiescent-state based reclamation RPSB
class of RCU implementations. QSBR implementations pro-
vide unmatched performance and scalability for read-mostl
data structures on cache-coherent shared-memory muakigro

EAD-COPY UPDATE (RCU) is a synchronization tech-sors [7], even with weakly ordered hardware and compilers.
nigue that was added to the Linux kernel in October of

2002. In contrast with conventional locking techniquest tha

ensure mutual exclusion among all threads, or with reader-
writer locks that allow readers to proceed concurrentlyhwit 3500 -

4000

each other, but not with updaters, RCU permits both readers
and updaters to make concurrent forward progress. RCU en-
sures that reads are coherent by maintaining multiple wessi

of objects and ensuring that each version remains intadt unt
the completion of all RCU read-side critical sections that
might reference that version. RCU defines and uses efficient
and scalable mechanisms for publishing and reading new
versions of an object and for deferring reclamation of old
versions. These mechanisms distribute the work betweeh rea
and update paths so as to make read paths extremely fast,

Manuscript received August 17, 2009; revised November 12020

Mathieu Desnoyers (mathieu.desnoyers@efficios.com) is W&fficiOS,
work done while at the Computer and Software Engineering Beyet,
Ecole Polytechnique de Montreal.

Paul E. McKenney (paulmck@linux.vnet.ibm.com) works at thiel IBnux
Technology Center on the Linaro project.

Alan S. Stern (stern@rowland.harvard.edu) is with the RodlInstitute,
Harvard University.

Michel R. Dagenais (michel.dagenais@polymtl.ca) is with @@mputer
and Software Engineering Department, Ecole Polytechniguiddntreal.

Jonathan Walpole (walpole@cs.pdx.edu) is with the CompBigence
Department, Portland State University.

This work has been submitted to the IEEE for possible puliinat
Copyright may be transferred without notice, after whicts thersion may
no longer be accessible.

RCU API Uses

Fig. 1.

3000

2500

2000

1500

1000

500

2002

2003

2004
2005
2006

2007
2008
2009
2010

Year

Linux-Kernel Usage of RCU

2011

Whereas we cannot yet put forward a single user-level RCU
implementation that is ideal for all environments, the ¢hre
classes of RCU implementations described in this paperdhou
suffice for most user-level uses of RCU.

This article is organized as follows: Section Il first prossd
a brief overview of RCU, with a definition of RCU semantics

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 2

Pre—existing reads

in Section II-D of theSupplementary Material. Then, Sec-

tion Il describes user-level scenarios that could beneditnf reureag ook | '°”*read*“”"°°k()
RCU. This is followed by the presentation of three classes 1 !

. - . - Reader1 [reads | [lredds | ‘ ! reads ‘
of RCU implementation in Section IV of th8upplementary n ‘ |
Material. Section V presents experimental results, comparing 'S Reader 2 [reads [| [reads] |
RCU implementations to each other and to locking, and finally © Reader3 [reads | [1] reads |
Section VI presents conclusions and recommendations. IE Reader 4 R | [T ks

1. BRIEE OVERVIEW OF RCU Updater ‘ removal ‘ grace period reclamation
This overview begins with an introduction to RCU concepts Time 7 |
- - - L ——
in Section II-A. Section [I-B shows how to delete an element B]
. . . . reu_assign_pointer() Grace period
from an RCU-protected linked list in spite of concurrentdea synchronize_rcu() waits for completion
ers. Section II-C of th&upplementary Material presents a list of pre-existing reads

of informal RCU desiderata, which details the goals pursoed
this work. Finally, Section 11-D of th&upplementary Material
gives a semi-formal description of RCU semantics, inclgdin

the grace-period guarantee illustrated in Figure 2 and th@qrithm is shown in Figure 2. Here, each box labeled “reads
publication guarantee that allows RCU to operate correctly 5n RCU read-side critical section.

on systems that do not provide sequential consistency.

Fig. 2. Schematic of RCU Grace Period and Read-Side Critieatiéhs

Each row of read-side critical sections denotes a separate
thread, for a total of four read-side threads. The bottomabw

A. Conceptual View of RCU Algorithms the figure denotes a fifth thread performing an RCU update.
RCU readers execute withiRCU read-side critical sec- This RCU update is split into two phases, a removal phase
tions. Each such critical section begins wittcu_read - ©Nn the lower left of the figure and a reclamation phase on

| ock(), ends withr cu_r ead_unl ock(), and may con- the lower right. These two phases must be separated by a
tain r cu_der ef er ence() or equivalent functions that ac-9race period, for example via theynchroni ze_rcu()
cess pointers to RCU-protected data structures. TheséepoinPmitive, vyh|ch initiates a grace period and waits for it to
access functions implement the notion of a dependend{pish. During the removal phase, the RCU update removes
ordered load, also known asrenory_or der _consume elements from a shared data structure (possibly inserting
load [12], which suppresses aggressive code-motion cempifome as well) by callingr cu_assi gn_poi nter () or
optimizations and generates a simple load on any system ot €qguivalent pointer-replacement function. Theu_as-
than DEC Alpha, where it generates a load followed by % 9n_poi nter () primitive implements the notion of store
memory-barrier instruction. The performance benefits obRCelease [12], which on sequentially consistent and tdtaks
are due to the fact thatcu_read_| ock() andrcu_- ordered systems compiles to a simple assignment. Pointers
read_unl ock() are exceedingly fast. In fact, Section Iv-cStored byr cu_assi gn_poi nter () can be fetched from
of the Supplementary Material shows how these two primitives Within read-side critical sections bycu_der ef erence().
can incur exactly zero overhead, as they do in server-cladi€ removed data elements will only be accessible to redei-si
Linux-kernel builds [13]. critical sections that ran concurrently with the removaagd

When a thread is not in an RCU read-side critical sectiofshown in gray), which are guaranteed to complete before the
it is in a quiescent state. A quiescent state that persists fodrace period ends. Therefore the reclamation phase caly safe
a significant time period is axtended quiescent state. Any free the data elements removed by the removal phase.
time period during which every thread has been in at least” Single grace period can serve multiple removal phases,
one quiescent state isgrace period; this implies that every €ven those carrleq out by multiple updaters. Furtht_ermdms, t
RCU read-side critical section that starts before a gradege Overhead of tracking RCU grace periods can be piggybacked
must end before that grace period does. Distinct grace geeri@" €xisting process-scheduling operations, to which RGisad
may overlap, either partially or completely. Any time pefio & small C(_)nstant qverhead. For some common worl_<|oad§, the
that includes a grace period is by definition itself a graggace-period-tracking overhead of RCU during a given time
period [13, 14]. Each grace period is guaranteed to compldféerval may be amortized over an arbitrarily large numbfer o
as long as all read-side critical sections are finite in domat RCU updates in that same interval [17], resulting in average
thus even a constant flow of such critical sections is unableR€T-RCU-update overheads arbitrarily close to zero.
extend an RCU grace period indefinitely.

Suppose that readers enclose each of their data-struct@reRCU Deletion From a Linked List

traversals in an RCU read-side critical section. If an updat RCU-protected data structures in the Linux kernel include
first removes an element from such a data structure and thigiRed lists, hash tables, radix trees, and a number of ousto
waits for a grace period, there can be no more readers access-

ing that element. The updater can then carry out destructivé!nterestingly enough, placing non-blocking-synchrotitra (NBS) [15]
updates in RCU read-side critical sections admits the samdifigagons to

operations, for exqmple freeing the glement, without diBNY Ngs aigorithms that are commonly provided by automatic garbatjectors.
any readers. A high-level schematic of such an RCU-basedbarticular, this approach avoids the ABA problem [16].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 3

ST on the user-level RCU implementation. Firstly, UST cannot
Readerinmated ;\ require _source-level modifications to the app_lication umde_
before start of [8] = [8] test, which rules out the QSBR approach that is presented in
grace period Section IV-C of theSupplementary Material. Secondly, UST
[must support instrumentation of execution sites selecyetidn
user at runtime. Because the user is permitted to instrument
signal handlers and library functions, RCU read-side aaiti
Reader Initated . sections must be nestable.
grace period BIND, a major domain-name server used for Internet

domain-name resolution, is facing scalability issues.[3ifjce
domain names are read often but rarely updated, using user-
level RCU might be beneficial. Others have mentioned pos-
sibilities in financial applications. Finally, one can akl@ue
that RCU has seen long use at user level in the guise of user-
c mode Linux.

In general, user-level RCU’s area of applicability appears

similar to that in the Linux kernel: to read-mostly data

Fig. 3. RCU Linked-List Deletion structures, especially in cases where stale data can benacco
modated.

=

isynchronize_rcu():

.

[c]

a list_del_rcu(B)

free(B)

Grace period

built data structures. Figure 3 shows how RCU may be used t
delete an element from a linked list that is concurrentlyngei i) .
traversed by RCU readers, as long as each reader conducts i&ection IV of theSupplementary Material describes several
traversal within the confines of a single RCU read-sideaaiti classes of RCU implementations. Section IV-A first desaibe
section. The first and second rows present the data struct&@g'e primitives that might be unfamiliar to the reader, and
from the viewpoint of a reader thread that started beforst(fithen Sections IV-C, IV-D, and IV-E present user-space RCU
row) or after (second row) the grace period began. The last r§NPlementations that are optimized for different use cases
of the figure shows the updater’s view of the data structurel "€ QSBR implementation presented in Section IV-C offers

The first column of the figure shows a singly-linked list witrfhe best possible read-side performance, but require it
elementsA, B, and C. Any reader initiated before the gracethread periodically calls a function to announce that itns i
period might hold references to any of these elements. & quiescent state, thus strongly constraining the apjuitat

The l'i st_del _rcu() routine unlinks elemenB from design. The general-purpose implementation presenteddn S
the list, but leaves the link fronB to C intact, as shown tion IV-D places almost no constraints on the application’s
on the second column of the figure. This permits reade#§Sign, thus being appropriate for use within a generabqae
already referencingd to advance toC, as shown on the library, but it has higher read-side overhead. Section IV-E
second and third columns of the figure. The transition froen tfPresents an implementation having low read-side overhead
second to the third column shows elemBrtisappearing from @nd requiring only that the application give up one POSIX
the reader-thread viewpoint. During this transition, edetB Signal to RCU update processing, and is called the signal-
moves fromglobally visible, where any reader may obtain Zased implementation. Finally, Section IV-F demonstrates
new reference, tdocally visible, where only readers alreadyt© create non-blocking RCU update primitives.
having a reference can see elemBnt

The synchroni ze_rcu() primitive waits for a grace V. EXPERIMENTAL RESULTS
period, after which all pre-existing read-side critical@ns Thjs section presents benchmarks comparing the RCU
will have completed, resulting in the state shown in the four mechanisms described in this paper to each other, to pthread
column of the figure, where readers no longer hold referengggtexes, to pthread reader-writer locks, and to per-thread
to elementB. ElementB's transition fromlocally visble to yytexes. The per-thread mutex approach uses one mutex per
private is denoted by the white background for Béox. Itis reader thread so that updater threads take all the mutexes,
then safe to invokér ee() , reclaiming elemenB's memory, gways in the same order, to exclude all readers. This aproa

9V. CLASSES OFRCU IMPLEMENTATIONS (SUMMARY)

as shown in the last column of the figure. ensures reader cache locality at the expense of slower-write
Although RCU has many uses, this list-deletion process dfje |ocking [22]. Section V-A examines read-side scaigbil
frequently used to replace reader-writer locking [18]. Section V-B discusses the effect on the read-side pringitive
of varying the critical-section duration, Section V-C pets
1. U SER-SPACERCU USAGE SCENARIOS the impact of updates on read-side performance, and finally

The user-level RCU work described later in this paper w&ection V-D compares update-side throughput. The goal is to
inspired by the need to reduce the overhead and impradentify clearly the situations in which RCU outperformsth
the scalability of theLTTng userspace tracer (UST), whichclassic locking solutions found in existing applications.
carries out performance analysis and monitoring of usedtano The machines used to run the benchmarks are an 8-core
applications [19, 20]. UST imposes important constraintatel Core2 Xeon E5405 clocked at 2.0 GHz and a 64-core

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 4

IBM PowerPC POWERS5+ clocked at 1.9 GHz. Each core of =~ 9e+09 ' ' 0SBR '
the PowerPC machine has 2 hardware threads. To eliminate 8e+09 Con et R
hardware-thread-level contention for per-core resouroes 7e+09 P ead mtox e
run our benchmarks using only one hardware thread on eac pthread reader-writer lock --o--
of the 64 cores.

The mutex and reader-writer lock implementations used for
comparison are the standard pthread implementations fiem t
GNU C Library 2.7 for 64-bit Intel and GNU C Library 2.5
for 64-bit PowerPC.

STM (Software Transactional Memory) is not included s
in these comparisons because the jury is still out on STM 0 10 20 30 40 50 60 70
practicality [23]. STM treats concurrent reads and writes t Number of cores
the same variable as conflicts, requiring frequent confligly 4 Rread-side Scalability of Various Synchronizatiaimtives, 64-core
checks, in turn degrading reader performance and scayabilPOWER5+
In contrast, Figures 9 and 10 will show that RCU’s non-
conflicting concurrent reads and writes minimize read over,, —9e+06 v v v v

head while maintaining extremely high read scalabilihgrev § 5%

T

T

6e+09
5e+09
4e+09
3e+09

Number of reads / §8cond

2e+09
1e+09

pthréad mutex' —
pthread reader-writer lock -----
7e+06

in the presence of heavy write workloads. Researchers have seso6

improved STM’s read-side performance and scalability ,[24]§ 5e+06 1

P : . .= 4e+06 [
albeit in some cases by placing the burden of instrumemtatios ,_ 1|
and privatization on the developer [25]. HTM (Hardwareé 2e+06 |
Transactional Memory) [26, 27, 28] is likely to be more 2 1e+°g r
scalable than STM; unfortunately, no system supporting HTM 0 10 20 30 40 50 60 70

was available for this study. Number of cores

I T S N R N

Fig. 5. Read-Side Scalability of Mutex and Reader-Writer K,084-core
A. Read-Sde Scalability POWERS5+

Figure 4 presents a read-side scalability comparison of the

_'?EU metlzhafnishr_ns and t_he locking primitiveshon thehpowerlz_’gections. This benchmark is performed with 8 reader threads
e goal of this test Is to measure each sync ronlzatlco’@quiring the read lock, reading the data structure, busy-

technique’s performance in read-only scenarios, varyhey tovaiti ; :
aiting for the appropriate delay, and releasing the lodlergé
number of CPUs. Each test ran on between 1 and 64 reaq "Ro aglctive updgﬁ)erp Y 9

duration of the read-side critical section. As the caiti
ction duration increases, the number of reads per second
mptotically approaches the inverse of this duratiore Th

rithmic axes of Figures 6-8 therefore cause the slopes
he curves to approach1. The region where each curve

scalability, courtesy of the perfect memory locality attd s
by these approaches. QSBR is fastest, followed by signgE
based RCU, general-purpose RCU and per-thread mutex, e
adding a constant per-CPU overhead. The Xeon beha\g.?
similarly and is not shown here. : :
Note that the performance of the QSBR and the signé]gsfsgsnz?zg f;g:f_s'%g I%s:g]arﬁilgﬁ d to the overhead of the

based-RCU implementations are more than an order of mag-)
nitude greater than that of the per-thread mutex. Becaiese thThus on the Xeon, QSBR and signal-based RCU have read

erformance of the per-thread mutex corresponds to thatsti)?e locking overheads at least a factor of 5 better thanrgéne
P . P . P) purpose RCU, which in turn is about a factor of 2 better than
perfect-locality uncontended locking, these two variaots

RCU are therefore more than an order of magnitude faster tI;Eﬁer—thread mutexes, which in turn is about a factor of 20ebett

. An reader-writer locks (the curves near their asymptotes
uncontended locking. Even the slower general-purpose R .
. L . ar 50, 250, 500, and 10,000 nanoseconds respectively). For
implementation is more than twice as fast as uncontended

lockina. making use of RCU extremelv attractive for reaJ—ead_Side critical sections longer than 1000 nanosecdhds,
9, 9 y difference in overhead between RCU and per-thread mutexes
mostly data structures.

In Figure 4, the traces for pthread mutex and pthread read'g{-neg“g'ble' The pthreg d mutex asymptote is lower than the
: ; T -others, because the single mutex can be held by only one
writer locking cannot be easily distinguished from the xsaxi .
Figure 5 therefore displays only these two traces showirr1eader at a time.
thgir well-known ne ati?/e icalab)illit ' gCorresponding curves for the POWERS5+ machine appear in
9 Y Figures 7 and 8. The difference between them is that Figure 8
) » . . uses 64 reader threads and 64 cores, whereas Figure 7 uses
B. Read-Side Critical Section Duration only 8 threads bound to 8 cores spaced with a stride of 8.
Figure 6 presents the number of reads per second afares close to each other share a common L2 and L3 cache on

function of the duration in nanoseconds of the read-sidicalti the POWERS5+, which causes reader-writer lock and pthread

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 5

Number of reads / second

Fig. 6.

1e+09

1e+08

1le+07

1e+06

100000

10000

1000

100

10

Impact of Read-Side Critical Section Length on 8-cieon,

Fomog

T T

QSBR —+—

Signal-based RCU ------

General-purpose RCU -+
Per-thread mutex -~

pthread reader-writer lock ——=-—-

pthread mutex --e--

<eg g

S S
o -

©..
65

! ! ! ! ! ! !

Logarithmic Scale

Number of reads / second

Fig. 7.

1e+09 ——

1e+08

1le+07

1le+06

100000

10000

1000

100

Impact of Read-Side Critical Section Length, 8 Redi@eads on

10 100 1000 10000 100000 1le+06 1e+07 1e+08
Read-side C.S. length (in nanoseconds)

T

T

T T T T
QSBR —+—
Signal-based RCU ---»---
General-purpose RCU -+
Per-thread mutex -~
pthread reader-writer lock =~]
pthread mutex --e--

! ! ! ! ! !

0.1

1 10 100 1000 10000 100000 1le+06
Read-side C.S. length (in nanoseconds)

64-core POWERS5+, Logarithmic Scale

machine, the difference in overhead between these schemes i
negligible for critical sections longer than 250 nanoseson

Two interesting features of the pthread reader-writer lock
trace in Figures 6, 7, and 8 deserve explanation. The first
is that the performance of pthread reader-writer locking is
inferior to that of pthread mutex for small read-side catic
section lengths, which is due to the slightly higher ovethea
of reader-writer locking compared to that of pthread mugex’
exclusive locking. The second is the slight rise in throughp
for reader-writer locking just prior to joining the asymiep
which is due to decreased memory contention on the data
structure implementing the reader-writer lock.

C. Effects of Updates on Read-Sde Performance

The results in Sections V-A and V-B clearly show RCU’s
read-side performance advantages. However, RCU updates ca
incur performance penalties due to the overhead of grace
periods and the resulting decreases in locality of refexrenc
This section therefore measures these performance pEnalti

Figure 9 presents the impact of update frequency on read-
side performance for the various locking primitives on the
Intel Xeon. It is performed by running 4 reader and 4 updater
threads and varying the delay between updates. The updaters
for the per-thread mutex, mutex and reader-writer lock ex-
periments store two different integer values successitely
the same variable. Readers accessing the variable twide whi
holding a lock are guaranteed to observe a single, unchanged
value. To provide the same effect, the RCU updaters allocate
a new structure, store an integer in this newly allocated
structure, and then atomically exchange the pointer to the

mutex to be slightly faster at lower stride values (not showmew structure with the old pointer currently being accessed
This has no significant effect on our results.
Comparing Figures 7 and 8 shows that the read-side ovealue in each structure; we verified that successively rsgori
heads of both the reader-writer lock and the pthread mutexo values to the same memory location had no significant
schemes are about 10 times larger when running on 64 coigpact on performance. Memory reclamation is batched using
than on 8 cores (curves near their asymptotes at 10,000 amdr cu_def er () mechanism; this mechanism uses fixed-
2500 nanoseconds instead of 1000 and 250 respectivelyd. T$ize per-thread queues to hold memory reclamation regsests
effect is caused by interprocessor cache-line-exchaniggrsle that an updater incurs a grace period no more than once every
and nonlinear scaling of lock-contention times. By contrast096 updates. A grace period is of course required whenever
the read-side overheads of the RCU and per-thread mugxupdater finds its queue is full. In addition, a separatéeror
schemes are independent of the number of CPUs, and on thi®ad empties the queues every 100 milliseconds to prawide

Number of reads / second

Fig. 8.

1e+10 =

1le+09

1le+08

le+07

1e+06

100000

10000

1000

100

Impact of Read-Side Critical Section Length, 64 Reddweads on

o
a3

s b

T

T

T T T T

S QSBR ——
Kok Signal-based RCU —x-—]
BB g g General-purpose RCU -

Per-thread mutex &
thread reader-writer lock -—=-—-
pthread mutex ---e--

gt e > EEP-N
*Atisf;‘l>l—.—l»ifif El
o

0.1

1 10 100 1000 10000 100000 1e+06
Read-side C.S. length (in nanoseconds)

64-core POWERS5+, Logarithmic Scale

by readers. The RCU experiments store only a single integer

upper bound for reclamation delay. Figure 10 shows thetresul
of this same benchmark running on a 64-core POWERS5+, with
32 reader and 32 updater threads.

Interestingly, on such a workload with 4 tight-loop readers
mutexes uniformly outperform reader-writer locking. Fut-
more, this particular implementation of reader-writerkiog
eventually suffers from reader starvation.

The RCU read-side performance shown in Figures 9 and 10
trails off at high update rates, the causes of which are ptede
in Section V-C of theSupplementary Material.

Figures 11 and 12 present the impact of the update-side
critical-section length on read-side performance. Thestst
are performed with 4 reader and 4 writer threads on the Xeon,
and with 32 reader and 32 writer threads on the POWERS5+.
Readers run as quickly as possible, with no delay between
reads. Writer iterations are separated by an arbitraridgesi

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 6

le+10 T T T T T T T le+10 T T T T T T T
& 1e+09 e | 1
1e+09 F e S] Q 1e+08 oK kokk ks 1
3 1e+07 F DDDE\DBDDDDDEDD 4
KKK A KK KKK KK KKK K Ky s N B a
g Y © 10000 | N ef
g 1ev07 } 1 5 1000 | e 1
0-9-9 O 0~ -O-0-0- 0. o 8 100 h—-\ o °
lesop | P A EEEREL LS E RS s 2 0l N - nn]
n = LN AN N o«
3y S 1r] . F@E b-w b
100000 L L L L L L = 01 L L L h L L h
1 10 100 1000 10000 100000 1le+06 1e+07 1 10 100 1000 10000 100000 1e+06 1le+07 1e+08
Updates/s Write-side C.S. length (in nanoseconds)
QSBR —+— QSBR —+—
Signal-based RCU ---»--- Signal-based RCU ---»---
General-purpose RCU - General-purpose RCU ----x---
Per-thread mutex -~ Per-thread mutex -~
pthread reader-writer lock ——=-- pthread reader-writer lock ——=--
pthread mutex ---o--- pthread mutex --e--
Fig. 9. Update Overhead, 8-core Intel Xeon, Logarithmic &cal Fig. 11. Impact of Update-Side Critical Section Length ondR8&de, 8-core
Intel Xeon, Logarithmic Scale
° le+10 T T T T T T
1le+10 : . . T T S le+09 F *]
TR = @ 1le+08 @ et R
le+09 B S R 2 1e+07 7Bg Beg |
“ B @G B B g k 2 1e+06 F-p-m-8 e T e WS Bt | -—n b
§ 1le+08 @ x)s; g 100000 L N S g g Y i
< 10000 | [
& 1ew07 1 21000 - [
3 100 | Voo
1le+06 F l—.-i»}i»-i)-'o"o'o'0'9'0"‘3'0'%%% q g 10 | 0‘0‘0‘0-\-/- VOVL d
zZ 1 L L L L L hd
100000 L L L L L
1 10 100 1000 10000 100000 1e+06 01 1 X l(_) 100 1_000 10000 100000 1e+06
Write-side C.S. length (in nanoseconds)
Updates/s
QSBR —+—
) QSBR Signal-based RCU ---»---
Signal-based RCU - General-purpose RCU -
General-purpose RCU -~ Per-thread mutex &
Per-thread mutex = pthread reader-writer lock -—=--
pthread reader-writer lock —-=--- pthread mutex --o---
pthread mutex ---o--
Fig. 10. Update Overhead, 64-core POWERS+, Logarithmic Scale Fig. 12. Impact of Update-Side Critical Section Length on dR&8&e, 64-

core POWERS5+, Logarithmic Scale

- . . ~ D. Update Throughput
delay consisting of 10 iterations of a busy loop, amounting

to 55 nanoseconds for the Intel Xeon (due to the “rep; nop” Maximum update rates can be inferred from the X-axis of
instruction recommended for x86 busy-waiting loops) anfigures 9 and 10 by selecting the rightmost point of a given
2.0 nanoseconds for the POWER5+. trace. For example, Figure 9 shows that RCU attains 2 million

))) updates per second, while per-thread locks manages but 0.1
With RCU approaches, the read-side performance is larg@lyjjion updates per second. A key reason for this resultas th

unaffected by updates. Slight variations can be seen orarlingc readers do not block RCU writers. Furthermore, although
scale (not shown here), but these are caused primarily by CRLing for an RCU grace period can incur significant latency
affinity of readers and writers, which influences the shadhg j; 4oes not necessarily degrade updater bandwidth because |
caches. production-quality implementations, RCU grace periods ca
Unlike RCU, per-thread mutex readers are significantgverlap in time.

impacted by long write-side critical sections. Again refer In Figure 10, the mutex-based benchmark performance
ring to Figures 11 and 12, read-side performance degradéarts degrading at 30,000 updates per second with 32 up-
significantly beyond a write-side critical-section length dater threads, while RCU easily exceeds 100,000 updates
5,000 nanoseconds on both the Xeon and the POWERS5+. @t second. These results clearly show the need to partition
the Xeon, the pthread reader-writer lock and pthread mutdata in order to attain good performance on larger systems.
degrade catastrophically starting at 250 to 750 nanosacof#nchmarks running only 4 updater threads on the 64-core
write-side critical-section length. In addition, theséhames system show similar effects (data not presented). Figure 9
show signs of starvation in the presence of long write-siddows that update overhead remains reasonably constant eve
critical sections. We saw instances of both reader stanvatiat higher update frequency for 4 updater threads on the Xeon.
(the dips in Figure 12) and writer starvation (not shown)herefore, as the number of concurrent updaters increases,
apparently the class which owns the lock first (either remdgnutex behavior seems to depend on the architecture and on
or writers) tends to keep it for the whole test duration. Thide specific GNU C Library version.

is likely caused by the brevity of the delays between readsin Figure 10, the reader-writer lock attains only 175 upslate
and updates, which favors the previous lock owner due per second, indicating that updaters are starved by readers
unfairness in the pthread implementations. Per-thread locks attain only 10,000 updates per seconds, Thu

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 7

locking significantly limits update rate relative to RCU. LEGAL STATEMENT

These results show that RCU QSBR and general-purposeryis work represents the views of the authors and does not

RCU attain the highest update rates for partitionable re%qécessarily represent the view of their employers.
mostly data structures (where “read mostly” means more than jx is a registered trademark of Linus Torvalds.

90% of accesses are reads) even compared to uncontend%lther company, product, and service hames may be trade-
locking. Thls_ is attnbL_lted to the lower performanc_e oveaithe marks or service marks of others.

for exchanging a pointer compared to the multiple atomic
operations and memory barriers implied by acquiring and
releasing a lock. RCU is sometimes used even for update-
heavy workloads, due to the wait-free and deadlock-immungl] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm,

REFERENCES

properties of its read-side primitives. The performancarch “Tornado: Maximizing locality and concurrency in a
acteristics of RCU for update-heavy workloads have been shared memory multiprocessor operating system,” in
presented elsewhere [29]. Proceedings of the 3" Symposium on Operating System

Design and Implementation, New Orleans, LA, February
1999, pp. 87-100.
[2] J. P. Hennessy, D. L. Osisek, and J. W. Seigh Il, “Passive
We have presented a set of RCU implementations covering a serialization in a multitasking environment,” US Patent
wide spectrum of application architectures. QSBR shows the and Trademark Office, Washington, DC, Tech. Rep. US
best performance characteristics, but severely constria Patent 4,809,168 (lapsed), February 1989.
application architecture by requiring that each readeeatir [3] V. Jacobson, “Avoid read-side locking via delayed ftee,
periodically announce that it is in a quiescent state. $igna September 1993, private communication.
based RCU does not have this requirement, and perfornjg] A. John, “Dynamic vnodes — design and implementa-
almost as well as QSBR, but requires reserving a POSIX tion,” in USENIX Winter 1995. New Orleans, LA:
signal. Unlike the other two, general-purpose RCU incugs si USENIX Association, January 1995, pp. 11-23.
nificant read-side overhead. However it minimizes constsai [5] P. E. McKenney and J. D. Slingwine, “Read-copy update:

VI. CONCLUSIONS

on application architecture, requiring only that each dlre Using execution history to solve concurrency problems,”
invokes an initialization function before entering its fiRCU in Parallel and Distributed Computing and Systems, Las
read-side critical section. Vegas, NV, October 1998, pp. 509-518.

Benchmarks demonstrate linear read-side scalability lof a[6] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pestereyv,
the RCU implementations and of per-thread locking. However M. F. Kaashoek, R. Morris, and N. Zeldovich, “An
they also demonstrate that the performance of the RCU im- analysis of Linux scalability to many cores,” ia"
plementations can exceed that of per-thread locking (ansl th USENIX Symposium on Operating System Design and
that of uncontended locking) by up to an order of magnitude, Implementation. Vancouver, BC, Canada: USENIX,
independent of the number of threads. The benchmarks also October 2010, pp. 1-16.
show that there is a read-side critical-section duratioopbd [7] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole,

which reader-writer locking, RCU, and per-thread lockireg-p “Performance of memory reclamation for lockless syn-
form similarly, and that this duration increases with thentwer chronization,” J. Parallel Distrib. Comput., vol. 67,

of cores. In addition, performing grace-period detection i no. 12, pp. 1270-1285, 2007.

batch allows RCU to attain better update rates than reade8] K. A. Fraser, “Practical lock-freedom,” Ph.D. disserta
writer locking, per-thread locking, and exclusive locking tion, King's College, University of Cambridge, 2003.

read-mostly data structures. It is possible to further elee [9] K. Fraser and T. Harris, “Concurrent programming with-

RCU update-side overhead by designing data structures so as out locks,”ACM Trans. Comput. Syst., vol. 25, no. 2, pp.

to provide good cache locality for updaters. 1-61, 2007.

[10] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N.
Scherer Ill, and N. Shavit, “A lazy concurrent list-based
set algorithm,” inPrinciples of Distributed Systems, 9th

We owe thanks to Maged Michael, Etienne Bergeron, International Conference OPODIS 2005. Springer-

Alexandre Desnoyers, Michael Stumm, Balaji Rao, Tom Hart, Verlag, 2005, pp. 3-16.

Robert Bauer, Dmitriy V’jukov, and the anonymous reviewerd 1] H. T. Kung and Q. Lehman, “Concurrent maintenance

for many helpful suggestions. We are indebted to the Linux of binary search treesACM Transactions on Database

community for their use of and contributions to RCU and Systems, vol. 5, no. 3, pp. 354-382, September 1980.

to Linus Torvalds for sharing his kernel with us all. We ar§l2] P. Becker, “Working draft, standard for programming

grateful to Kathy Bennett for her support of this effort. language C++,” August 2010, [Online]. Available:
This material is based upon work supported by the National http://open-std.org/jtcl/sc22/wg21/docs/papers/2010

Science Foundation under Grant No. CNS-0719851. This n3126.pdf.

work is funded by Google, Natural Sciences and EngineerifitfB] D. Guniguntala, P. E. McKenney, J. Triplett, and

Research Council of Canada, Ericsson and Defence Research J. Walpole, “The read-copy-update mechanism for sup-

and Development Canada. porting real-time applications on shared-memory multi-

ACKNOWLEDGEMENTS

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2010 8

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

processor systems with LinuxJBM Systems Journal, [28] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early expe-
vol. 47, no. 2, pp. 221-236, May 2008. rience with a commercial hardware transactional memory
P. E. McKenney and J. Walpole. (2007, December) implementation,” inFourteenth International Conference
What is RCU, fundamentally? [Online]. Available: Linux on Architectural Support for Programming Languages
Weekly News, http://lwn.net/Articles/262464/. and Operating Systems (ASPLOS ' 09), Washington, DC,

M. Herlihy, “Implementing highly concurrent data ob- USA, March 2009, pp. 157-168.

jects,” ACM Transactions on Programming Languages [29] P. E. McKenney, “RCU vs. locking performance on dif-
and Systems, vol. 15, no. 5, pp. 745-770, Nov. 1993. ferent CPUs,” inlinux.conf.au, Adelaide, Australia, Jan-

R. K. Treiber, “Systems programming: Coping with uary 2004, [Online]. Available: http://www.rdrop.com/
parallelism,” April 1986, RJ 5118. users/paulmck/RCU/lockperf.2004.01.17a. pdf

D. Sarma and P. E. McKenney, “Making RCU safe Mathieu Desnoyers is President & pgm
for deep sub-millisecond response realtime applicationgounder of EfficiOS. He maintains the|
in Proceedings of the 2004 USENIX Annual Technical LTTng project and the Userspace RCU
Conference (FREENIX Track). USENIX Association, library. His research interests are in per[-
June 2004, pp. 182-191. formance analysis tools, operating sys-
P. E. McKenney. (2008, January) What is RCU? part 22ams, scalability and real-time concerns.
Usage. [Online]. Available: Linux Weekly News, http:He holds a Ph.D. degree in Computer s \
/l'wn.net/Articles/263130/. Engineering from Ecole Polytechnique de |
M. Desnoyers, “Low-impact operating system tracingMontreal (2010).

Ph.D. dissertation, Ecole Polytechnique de Mealr Paul E. McKenney is an Distin-
December 2009, [Online]. Available: http://www.lttng.guished Engineer at IBM. He main-
org/pub/thesis/desnoyers-dissertation-2009-12.pdf. tains the Linux-kernel RCU implemen-
P.-M. Fournier, M. Desnoyers, and M. R. Dagenaigations, and his primary research interes
“Combined tracing of the kernel and applications witlis shared-memory parallel software. Hd
LTTng,” in Proceedings of the 2009 Linux Symposium, holds a Ph.D. in computer science anq
Jul. 2009. engineering from Oregon Health and Scif&
T. Jinmei and P. Vixie, “Implementation and evaluatioences University (2004).)\ P
of moderate parallelism in the BIND9 DNS server,” in Alan S. Stern received a Ph.D. in
Proceedings of the annual conference on USENIX Annual Mathematical Logic from the University
Technical Conference, Boston, MA, February 2006, pp.of California at Berkeley in 1984. His
115-128. current position at the Rowland Insti-
W. C. Hsieh and W. E. Weihl, “Scalable reader-writetute at Harvard is Staff Computational
locks for parallel systems,” irProceedings of the 6" Scientist. He is actively involved with
International Parallel Processing Symposium, Beverly Linux kernel development, particularly in !
Hills, CA, USA, March 1992, pp. 216-230. the USB and Power Management subsy‘
C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wutems.

S. Chiras, and S. Chatterjee, “Software transactionalMichel R. Dagenaisis professor at
memory: Why is it only a research toyACM Queue, Ecole Polytechnique de Montreal, in the
September 2008. Computer and Software Engineering De-
L. Dalessandro, M. F. Spear, and M. L. Scott, “NOre@artment. His research interests includg
streamlining STM by abolishing ownership records,” irseveral aspects of multi-core distributeq
PPOPP, 2010, pp. 67-78. systems with emphasis on Linux ancii
A. Dragovejic, P. Felber, V. Gramoli, and R. Guerraouippen systems. His group has made seve
“Why STM can be more than a research toy,” Februwriginal contributions to Linux.

ary 2010, [Online]. Available: http://infoscience.epfiic ~ Jonathan Walpoleis a Full Professor
record/144052/files/paper.pdf. in the Computer Science Department at
H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. CPortland State University. His research in-
Minh, W. Baek, C. Kozyrakis, and K. Olukotun, “A scal-terests are in operating systems, and scal-
able, non-blocking approach to transactional memory,” @ble concurrent programming. He holds \
HPCA Proceedings of the 2007 |EEE 13th International B.Sc. and Ph.D. degrees in Compute
Symposium on High Performance Computer Architecture, Science from Lancaster University, UK
2007, pp. 97-108. (1984 and 1987).
S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar,

and R. Balasubramonian, “Scalable and reliable commu-

nication for hardware transactional memory,” RACT

Proceedings of the 17th International Conference on Par-

allel Architectures and Compilation Techniques, 2008,

pp. 144-154.

