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APPENDIX

A. User-Space RCU Desiderata

Extensive use of RCU within the practitioner community

has lead to the following user-space RCU desiderata:

1) RCU read-side primitives must have O(1) computational

complexity with a small constant, thus enabling real-

time use and avoiding lock-based deadlocks. “Small

constant” means avoiding expensive operations such as

cache misses, atomic instructions, memory barriers, and,

where feasible, conditional branches [1].

2) RCU read-side primitives should be usable in all con-

texts, including nested within other RCU read-side crit-

ical sections and inside user-level signal handlers [2].

3) RCU read-side primitives must be unconditional, with

neither failure nor retry, thus avoiding livelocks [3].

4) RCU readers must not starve writers, even given arbitrar-

ily high rates of time-bounded read-side critical sections.

5) RCU read-side critical sections may not contain opera-

tions that wait for a grace period, such as synchro-

nize_rcu() (it would self-deadlock), nor may they

acquire locks that are held across calls to synchro-

nize_rcu(). However, non-interfering lock acquisi-

tion/release and other non-idempotent operations such

as I/O should be permitted [4].

6) Mutating RCU-protected data structures must be permit-

ted within RCU read-side critical sections, for example

by acquiring the lock used to protect updates [4]. Such

lock acquisitions can be thought of as unconditional

read-to-write upgrades. However, any lock acquired

within a read-side critical section cannot be held while

waiting for a grace period.

7) RCU primitives should be independent of memory allo-

cator design and implementation [3].

Although in-kernel RCU implementations are common,

making them available to user applications is not practical.

Firstly, many kernel-level RCU implementations assume that

RCU read-side critical sections cannot be preempted, which

is not the case at user level. Secondly, a user application

invoking kernel-level RCU primitives could hang the system

by remaining in an RCU read-side critical section indefinitely.

Finally, invoking any in-kernel RCU implementation from

user-level code introduces system-call overhead, violating the

first desideratum above.

In contrast, the RCU implementations described in Ap-

pendix D are designed to meet the above list of desiderata

with acceptably low overheads.

1 struct lin_coefs {

2 double a, b, c;

3 };

4

5 struct lin_coefs *lin_approx_p;

6

7 void control_loop(void)

8 {

9 struct lin_coefs *p;

10 struct lin_coefs lc;

11 double x, y;

12

13 rcu_register_thread();

14 for (;;) {

15 x = measure();

16 rcu_read_lock();

17 p = rcu_dereference(lin_approx_p);

18 lc = *p;

19 rcu_read_unlock();

20 y = lin_approx(x, lc.a, lc.b, lc.c);

21 do_control(y);

22 sleep_us(50);

23 }

24 }

25

26 void lin_approx_loop(void)

27 {

28 struct lin_coefs lc[2];

29 int cur_idx = 0;

30 struct lin_coefs *p;

31

32 rcu_register_thread();

33 for (;;) {

34 cur_idx = !cur_idx;

35 p = &lc[cur_idx];

36 calc_lin_approx(p);

37 rcu_assign_pointer(lin_approx_p, p);

38 synchronize_rcu();

39 sleep(5);

40 }

41 }

Fig. 1. RCU Use Case: Real-Time Control

B. Example RCU Use Case

Consider a real-time closed-loop control application gov-

erned by a complex mathematical control law, where the

control loop must execute at least every 100 microseconds.

Suppose that this control law is too computationally expensive

to be computed each time through the control loop, so a

simpler linear approximation is used instead. As environmental

parameters (such as temperature) slowly change, a new linear

approximation must be computed from the full mathematical

control law. Therefore, a lower-priority task computes a set

of three coefficients for the linear approximation periodically,

for example, every five seconds. The control-loop task then

makes use of the most recently produced set of coefficients.

Of course, it is critically important that each control-loop

computation use a consistent set of coefficients. It is therefore

necessary to use proper synchronization between the control
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loop and the production of a new set of coefficients. In con-

trast, use of a slightly outdated set of coefficients is acceptable.

We can therefore use RCU to carry out the synchronization, as

shown in the (fanciful) implementation in Figure 1. The overall

approach is to periodically publish a new set of coefficients

using rcu_assign_pointer(), which are subscribed to

using rcu_dereference(). The synchronize_rcu()

primitive is used to prevent overwriting a set of coefficients

that is still in use. Because only one thread will be updating

the coefficients, update-side synchronization is not required.

The control_loop() function is invoked from the

thread performing closed-loop control. It first invokes rcu_-

register_thread() to make itself known to RCU, and

then enters an infinite loop performing the real-time control

actions. Each pass through this loop first measures the control

input value, then enters an RCU read-side critical section to

obtain the current set of coefficients, uses lin_approx() to

compute a new control value, uses do_control() to output

this value, and finally does a 50-microsecond delay.1 The

use of rcu_dereference() ensures that the coefficients

will be fully initialized, even on weakly ordered systems, and

the use of rcu_read_lock() and rcu_read_unlock()

ensure that subsequent grace periods cannot complete until the

coefficients are completely copied.

The lin_approx_loop() function is invoked from the

thread that is to periodically compute a new set of coefficients

for use by control_loop(). As with control_loop(),

it first invokes rcu_register_thread() to make itself

known to RCU, and then enters an infinite loop performing

the coefficient calculations. To accomplish this, it defines an

array of two sets of coefficients along with an index that selects

which of the two sets is currently in effect. Each pass through

the loop computes a new set of coefficients into the element

of the array that is not currently being used by readers, uses

rcu_assign_pointer() to publish this new set, uses

synchronize_rcu() to wait for control_loop() to

finish using the old set, and finally waits for five seconds

before repeating this process.

Because rcu_dereference() is wait-free with small

overhead, this approach is well-suited to real-time systems

running on multi-core systems. In contrast, approaches based

on locking would require control_loop() to wait on

lin_approx_loop() when the latter was installing a new

set of coefficients, meaning that they might be subject to

priority inversion.

C. Overview of RCU Semantics

RCU semantics comprise the grace-period guarantee and

the publication guarantee. As noted earlier, concurrent modi-

fications of an RCU-protected data structure must be coordi-

nated by some other mechanism, for example, locking.

1) Grace-Period Guarantee: As noted in the printed paper,

RCU read-side critical sections are delimited by rcu_-

read_lock() and rcu_read_unlock(), and RCU

1We are arbitrarily choosing a delay half that of the real-time deadline. An
actual real-time application might compute the delay based on measuring the
overhead of the code in the loop, or it might use timers.

grace periods are periods of time such that all RCU read-

side critical sections in existence at the beginning of a given

grace period have completed before its end.

Somewhat more formally, consider a group of statements

Ri within a single RCU read-side critical section:

rcu_read_lock();

R0; R1; R2; . . . ;

rcu_read_unlock();

Consider also groups of statements Mm (some of which

may mutate shared data structures) and Dn (some of which

may destroy shared data structures) separated by synchro-

nize_rcu():

M0; M1; M2; . . . ; synchronize_rcu(); D0; D1; D2; . . . ;

Then the following holds, where “→” indicates that the

statement on the left executes prior to that on the right:2

∀m, i(Mm → Ri) ∨ ∀i, n(Ri → Dn). (1)

In other words, a given read-side critical section cannot extend

beyond both sides of a grace period. Formulas 2 and 3 follow

straightforwardly and are often used to validate uses of RCU

(“=⇒” denotes logical implication):

∃i,m(Ri → Mm) =⇒ ∀j, n(Rj → Dn), (2)

∃n, i(Dn → Ri) =⇒ ∀m, j(Mm → Rj). (3)

In other words, if any statement in a given read-side critical

section executes prior to any statement preceding a given grace

period, then all statements in that critical section must execute

prior to any statement following this same grace period. Con-

versely, if any statement in a given read-side critical section

executes after any statement following a given grace period,

then all statements in that critical section must execute after

any statement preceding this same grace period.3 A striking

pictoral representation of this grace-period guarantee is shown

in Figure 2 of the printed paper.

This guarantee permits RCU-based algorithms to trivially

avoid a number of difficult race conditions whose resolution

can otherwise result in poor performance, limited scalability,

and great complexity. However, on weakly ordered systems

this guarantee is insufficient. We also need some way to

guarantee that if a reader sees a pointer to a new data structure,

it will also see the values stored during initialization of that

structure. This guarantee is presented in the next section.

2This description is deliberately vague. More-precise definitions of “A →

B” [5, Section 1.10] consider the individual memory locations accessed by
both A and B, and order the two statements with respect to each of those
accesses. For our purposes, what matters is that A → B and B → A can’t
both hold. If A and B execute concurrently then both relations may fail.
However as a special case, if A is a store to a variable and B is a load from
that same variable, then either A → B (B reads the value stored by A or a
later value) or B → A (B reads a value prior to that stored by A).

3Some RCU implementations may choose to weaken this guarantee so
as to exclude special-purpose operations such as MMIO accesses, I/O-port
instructions, and self-modifying code. Such weakening is appropriate on
systems where ordering these operations is expensive and where the users
of that RCU implementation either (1) are not using these operations or (2)
insert the appropriate ordering into their own code, as many system calls do.
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2) Publication Guarantee: Note well that the statements Ri

and Mm may execute concurrently, even in the case where Ri

is referencing the same data element that Mm is concurrently

modifying. The publication guarantee provided by rcu_-

assign_pointer() and rcu_dereference() handles

this concurrency correctly and easily: even on weakly ordered

systems, any dereference of a pointer returned by rcu_-

dereference() is guaranteed to see any change prior

to the corresponding rcu_assign_pointer(), including

any change prior to any earlier rcu_assign_pointer()

involving that same pointer.

Somewhat more formally, suppose that rcu_assign_-

pointer() is used as follows:

I0; I1; I2; . . . ; rcu_assign_pointer(g,p);

where each Ii is a statement (including those initializing fields

in the structure referenced by local pointer p), and where

global pointer g is visible to reading threads. This initialization

sequence is part of the Mm sequence of statements discussed

earlier.

The body of a canonical RCU read-side critical section

would appear as follows:

. . . ; q = rcu_dereference(g); A0; A1; A2; . . . ;

where q is a local pointer, g is the same global pointer

updated by the earlier rcu_assign_pointer() (and pos-

sibly updated again by later invocations of rcu_assign_-

pointer()), and some of the Ai statements dereference

q to access fields initialized by some of the Ii statements.

This sequence of rcu_dereference() followed by Ai

statements is part of the Ri statements discussed earlier.

Then we have the following, where M is the rcu_ass-

ign_pointer() and R is the rcu_dereference():4

M → R =⇒ ∀i, j(Ii → Aj). (4)

In other words, if a given rcu_dereference() statement

accesses the value stored to g by a given rcu_assign_-

pointer(), then all statements dereferencing the pointer re-

turned by that rcu_dereference() must see the effects of

any initialization statements preceding that rcu_assign_-

pointer() or any earlier rcu_assign_pointer() stor-

ing to g.

This guarantee provides readers a consistent view of newly

added data.

3) Uses of RCU Guarantees: These grace-period and publi-

cation guarantees are extremely useful, but in ways that are not

always immediately obvious. This section therefore describes

a few of the most common uses of these guarantees.

First, they can provide existence guarantees [6], so that

any RCU-provided data element accessed anywhere within a

given RCU read-side critical section is guaranteed to remain

intact throughout that RCU read-side critical section. Existence

guarantees are provided by ensuring that an RCU grace period

elapses between the moment a given data element is rendered

4Formula 4 is not strictly correct. On some architectures, Ii → Aj is
guaranteed only if Aj carries a data dependency from the local pointer q;
otherwise the CPU may reorder or speculatively execute Aj before the rcu_-
dereference() call. In practice this restriction does not lead to problems.

inaccessible to readers and the moment this element’s memory

is reclaimed and/or reused.

Second, the RCU guarantees can provide type-safe mem-

ory [7] by integrating RCU grace periods into the memory

allocator—for example, the Linux kernel’s slab allocator pro-

vides type-safe memory when the SLAB_DESTROY_BY_RCU

flag is specified. This integration is accomplished by permit-

ting a freed data element to be immediately reused, but only

if its type remains unchanged. The allocator must ensure that

an RCU grace period elapses before that element’s type is

permitted to change. This approach guarantees that any data

element accessed within a given RCU read-side critical section

retains its type throughout that RCU read-side critical section.

Finally, as noted earlier, RCU’s grace-period and publication

guarantees can often be used to replace reader-writer locking.

As a result, the grace-period and publication guarantees

enable a wide variety of algorithms and data structures pro-

viding extremely low read-side overheads for read-mostly data

structures [8, 2, 9, 1]. Again, note that concurrent updates must

be handled by some other synchronization mechanism.

With this background on RCU, we are ready to consider

how it might be used in user-level applications.

D. Classes of RCU Implementations

This section describes several classes of RCU implementa-

tions. Appendix D1 first describes some primitives that might

be unfamiliar to the reader, and then Appendix D2, D3, and D4

present user-space RCU implementations that are optimized

for different use cases. The QSBR implementation presented

in Appendix D2 offers the best possible read-side performance,

but requires that each thread periodically calls a function to

announce that it is in a quiescent state, thus strongly constrain-

ing the application’s design. The implementation presented in

Appendix D3 places almost no constraints on the application’s

design, thus being appropriate for use within a general-purpose

library, but it has higher read-side overhead. Appendix D4

presents an implementation having low read-side overhead and

requiring only that the application give up one POSIX signal

to RCU update processing. Finally, Appendix D5 demonstrates

how to create non-blocking RCU update primitives.

We start with a rough overview of some elements common

to all three implementations. A global variable, rcu_gp_-

ctr, tracks grace periods. Each thread has a local variable

indicating whether or not it is currently in a read-side critical

section, together with a snapshot of rcu_gp_ctr’s value at

the time the read-side critical section began. The synch-

ronize_rcu() routine iterates over all threads, using these

snapshots to wait so long as any thread is in a read-side critical

section that started before the current grace period.

Grace periods can be tracked in two different ways. The

simplest method, used in Appendix D2, is for rcu_gp_ctr

simply to count grace periods. Because of the possibility of

counter overflow, this method is suitable only for 64-bit archi-

tectures. The other method divides each grace period up into

two phases and makes rcu_gp_ctr track the current phase.

As explained in Appendix D3 below, this approach avoids the

problem of counter overflow at the cost of prolonging grace

periods; hence it can be used on all architectures.
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1 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))

2

3 #define LOAD_SHARED(p) ACCESS_ONCE(p)

4 #define STORE_SHARED(x, v) ({ ACCESS_ONCE(x) = (v); })

5

6 #define barrier() asm volatile("" : : : "memory")

Fig. 2. Shared-Memory Compiler Primitives

1) Common Primitives: This section describes a number of

primitives that are used by examples in later sections.

Figure 2 introduces primitives dealing with shared mem-

ory at the compiler level. The ACCESS_ONCE() primitive

applies volatile semantics to its argument. The LOAD_-

SHARED() primitive prohibits any compiler optimization that

might otherwise turn a single load into multiple loads (as

might happen under heavy register pressure), and vice versa.

The STORE_SHARED() primitive acts as an assignment

statement, but prohibits any compiler optimization that might

otherwise turn a single store into multiple stores and vice

versa. The barrier() primitive prohibits any compiler

code-motion optimization that might otherwise move loads or

stores across the barrier(). Among other things, we use it

to force the compiler to reload values on each pass through a

wait loop. It is strictly a compiler directive; it emits no code.

The smp_mb() primitive (not shown in Figure 2 be-

cause its implementation is architecture-specific) emits a full

memory barrier, for example, the sync instruction on the

PowerPC architecture (“mb” stands for “memory barrier”).

The fundamental ordering property of memory barriers can

be expressed as follows: Suppose one thread executes the

statements

A0; A1; A2; . . . ; smp_mb(); B0; B1; B2; . . . ;

and another thread executes the statements

C0; C1; C2; . . . ; smp_mb(); D0; D1; D2; . . . ;

Then ∃m,n(Bm → Cn) implies ∀i, j(Ai → Dj).

These primitives can be expressed directly in terms of

the upcoming C++0x standard [5]. For the smp_mb()

primitive this correspondence is not exact; our memory

barriers are somewhat stronger than the standard’s

atomic_thread_fence(memory_order_seq_cst).

The LOAD_SHARED() primitive maps to x.load(mem-

ory_order_relaxed) and STORE_SHARED() to

x.store(memory_order_relaxed). The barrier()

primitive maps to atomic_signal_fence(memory_-

order_seq_cst). In addition, rcu_dereference()

maps to x.load(memory_order_consume) and

rcu_assign_pointer() maps to x.store(v,

memory_order_release).

Figure 3 introduces declarations and data structures used

by all implementations, along with the process-wide reg-

istry tracking all threads containing RCU read-side criti-

cal sections. The pthread mutex rcu_gp_lock (lines 1–

2) serializes addition (line 17), removal (line 26) and it-

eration (which will be presented in Figures 5, 7, and 10)

on the reader thread list (list head is at line 3 and nodes

at line 8 of Figure 3). This rcu_gp_lock also serial-

izes grace-period detection and updates of the global grace-

1 pthread_mutex_t rcu_gp_lock =

2 PTHREAD_MUTEX_INITIALIZER;

3 LIST_HEAD(registry);

4

5 struct rcu_reader {

6 unsigned long ctr;

7 char need_mb;

8 struct list_head node;

9 pthread_t tid;

10 };

11 struct rcu_reader __thread rcu_reader;

12

13 void rcu_register_thread(void)

14 {

15 rcu_reader.tid = pthread_self();

16 mutex_lock(&rcu_gp_lock);

17 list_add(&rcu_reader.node, &registry);

18 mutex_unlock(&rcu_gp_lock);

19 rcu_thread_online();

20 }

21

22 void rcu_unregister_thread(void)

23 {

24 rcu_thread_offline();

25 mutex_lock(&rcu_gp_lock);

26 list_del(&rcu_reader.node);

27 mutex_unlock(&rcu_gp_lock);

28 }

Fig. 3. RCU Reader-Thread Registry

period counter. The pthread_mutex_t type is defined

by the pthread library for mutual exclusion variables; the

mutex_lock() primitive acquires a pthread_mutex_t

instance and mutex_unlock() releases it. Line 11 intro-

duces the rcu_reader per-thread variable, through which

each access to per-thread registry information is performed.

These per-thread variables are declared via the __thread

storage-class specifier, as specified by C99 [10], and as ex-

tended by gcc to permit cross-thread access to per-thread

variables.5 The tid field of struct rcu_reader entry

contains the thread identifier returned by pthread_self().

This identifier is used to send signals to specific threads

by signal-based RCU, presented in Appendix D4. The

need_mb field is also used by the signal-based RCU im-

plementation to keep track of threads which have executed

their signal handlers. The rcu_thread_online() and

rcu_thread_offline() primitives mark the online sta-

tus of reader threads and are specific to the QSBR RCU

implementation shown in Appendix D2.

2) Quiescent-State-Based Reclamation RCU: The QSBR

RCU implementation provides near-zero read-side overhead,

as has been presented earlier [8]. This section expands on

that work by describing a similar QSBR implementation for

64-bit systems. The price of minimal overhead is that each

thread in an application is required to periodically invoke

rcu_quiescent_state() to announce that it resides

in a quiescent state. This requirement can entail extensive

application modifications, limiting QSBR’s applicability.

QSBR uses these quiescent-state announcements to approx-

imate the extent of read-side critical sections, treating the

interval between two successive announcements as a single,

large critical section. As a consequence, the rcu_read_-

5This extension is quite common. One reason C99 does not mandate this
extension is to avoid prohibiting implementations that map any given per-
thread variable to a single address for all threads [11].
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1 #define RCU_GP_ONLINE 0x1

2 #define RCU_GP_CTR 0x2

3

4 unsigned long rcu_gp_ctr = RCU_GP_ONLINE;

5

6 static inline void rcu_read_lock(void)

7 {

8 }

9

10 static inline void rcu_read_unlock(void)

11 {

12 }

13

14 static inline void rcu_quiescent_state(void)

15 {

16 smp_mb();

17 STORE_SHARED(rcu_reader.ctr,

18 LOAD_SHARED(rcu_gp_ctr));

19 smp_mb();

20 }

21

22 static inline void rcu_thread_offline(void)

23 {

24 smp_mb();

25 STORE_SHARED(rcu_reader.ctr, 0);

26 }

27

28 static inline void rcu_thread_online(void)

29 {

30 STORE_SHARED(rcu_reader.ctr,

31 LOAD_SHARED(rcu_gp_ctr));

32 smp_mb();

33 }

Fig. 4. RCU Read Side Using Quiescent States

lock() and rcu_read_unlock() primitives need do

nothing and will often be inlined and optimized away, as in

fact they are in server builds of the Linux kernel. QSBR thus

provides unsurpassed read-side performance, albeit at the cost

of longer grace periods. When QSBR is being used to reclaim

memory, these longer grace periods result in more memory

being consumed by data structures waiting for grace periods,

in turn resulting in the classic CPU-memory tradeoff.

The 64-bit global counter rcu_gp_ctr shown in Figure 4

contains 1 in its low-order bit and contains the current grace-

period number in its remaining bits.6 It may be accessed at

any time by any thread but may be updated only by the thread

holding rcu_gp_lock. The rcu_quiescent_state()

function simply copies a snapshot of the global counter to

the per-thread rcu_reader.ctr variable (which may be

modified only by the corresponding thread). The 1 in the low-

order bit serves to indicate that the reader thread is not in

an extended quiescent state. The two memory barriers enforce

ordering of preceding and subsequent accesses.

As an alternative to periodically invoking rcu_quies-

cent_state(), threads may use the rcu_thread_off-

line() and rcu_thread_online() APIs to mark the

beginnings and ends of extended quiescent states. These three

functions must not be called from within read-side critical sec-

tions. The rcu_thread_offline() function simply sets

the per-thread rcu_reader.ctr variable to zero, indicating

that this thread is in an extended quiescent state. Memory

6If quiescent states are counted, logged, or otherwise recorded, then this
information may be used in place of the global rcu_gp_ctr counter [12].
For example, context switches are counted in the Linux kernel’s QSBR imple-
mentation, and some classes of user applications are expected to have similar
operations [12, Section 3.4]. However, the separate global rcu_gp_ctr

counter permits discussion independent of any particular application.

1 void synchronize_rcu(void)

2 {

3 unsigned long was_online;

4

5 was_online = rcu_reader.ctr;

6 smp_mb();

7 if (was_online)

8 STORE_SHARED(rcu_reader.ctr, 0);

9 mutex_lock(&rcu_gp_lock);

10 update_counter_and_wait();

11 mutex_unlock(&rcu_gp_lock);

12 if (was_online)

13 STORE_SHARED(rcu_reader.ctr,

14 LOAD_SHARED(rcu_gp_ctr));

15 smp_mb();

16 }

17

18 static void update_counter_and_wait(void)

19 {

20 struct rcu_reader *index;

21

22 STORE_SHARED(rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);

23 barrier();

24 list_for_each_entry(index, &registry, node) {

25 while (rcu_gp_ongoing(&index->ctr))

26 msleep(10);

27 }

28 }

29

30 static inline int rcu_gp_ongoing(unsigned long *ctr)

31 {

32 unsigned long v;

33

34 v = LOAD_SHARED(*ctr);

35 return v && (v != rcu_gp_ctr);

36 }

Fig. 5. RCU Update Side Using Quiescent States

ordering is needed only at the beginning of the function

because the following code cannot be in a read-side critical

section. The rcu_thread_online() function is similar

to rcu_quiescent_state(), except that it requires a

memory barrier only at the end. Note that all the functions

in Figure 4 are wait-free because they each execute a fixed

sequence of instructions.

Figure 5 shows synchronize_rcu() and its two helper

functions, update_counter_and_wait() and rcu_-

gp_ongoing(). The synchronize_rcu() function puts

the current thread into an extended quiescent state if it is

not already in one, forces ordering of the caller’s accesses,

and invokes update_counter_and_wait() under the

protection of rcu_gp_lock. The update_counter_-

and_wait() function increments the global rcu_gp_ctr

variable by 2 (recall that the lower bit is reserved for readers

to indicate whether they are in an extended quiescent state).

It then uses list_for_each_entry() to scan all of

the threads, invoking rcu_gp_ongoing() on each, thus

waiting until all threads have exited any pre-existing RCU

read-side critical sections. The barrier() macro on line 23

prevents the compiler from checking the threads before up-

dating rcu_gp_ctr, which could result in deadlock. The

msleep() function on line 26 blocks for the specified num-

ber of milliseconds, in this case chosen arbitrarily. Finally, the

rcu_gp_ongoing() function checks to see if the specified

counter indicates that the corresponding thread might be in

a pre-existing RCU read-side critical section. It accomplishes

this with the two-part check on line 35: if the counter is zero,

the thread is in an extended quiescent state, while if the counter
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is equal to rcu_gp_ctr, the thread is in an RCU read-side

critical section that began after beginning of the current RCU

grace period, and therefore need not be waited for.

We specify a 64-bit rcu_gp_ctr to avoid overflow.

The fundamental issue is that there is no way to copy a

value from one memory location to another atomically. Sup-

pose reader thread T is preempted just before executing the

STORE_SHARED() call in rcu_thread_online(), after

the LOAD_SHARED() call has returned. Until the store takes

place the thread is still in its extended quiescent state, so

there is nothing to prevent other threads from making multiple

calls to synchronize_rcu() (and thereby incrementing

rcu_gp_ctr) during the preemption delay. If the counter

cycles through all but one of its values, the stale value finally

stored in thread T ’s rcu_reader.ctr will actually be

rcu_gp_ctr’s next value. As a result, if another thread

later calls synchronize_rcu() after T has entered a read-

side critical section, then update_counter_and_wait()

might return before T has left this critical section, in violation

of RCU’s semantics. With 64 bits, thousands of years would be

required to overflow the counter and hence the possibility may

be ignored. However, given a 32-bit rcu_gp_ctr this sce-

nario is possible; hence 32-bit implementations should instead

adapt the two-phase scheme discussed in Appendix D3 [13].

Given that they are empty functions, the rcu_read_-

lock() and rcu_read_unlock() primitives are wait-

free under the most severe conceivable definition [14]. Because

it waits for pre-existing readers, synchronize_rcu() is

not non-blocking. Appendix D5 describes how RCU updates

can support non-blocking algorithms in the same sense as they

are supported by garbage collectors.

The need for periodic rcu_quiescent_state() invo-

cations can make QSBR impossible to use in some situations,

such as within libraries. In addition, this QSBR implementa-

tion does not allow concurrent synchronize_rcu() calls

to share grace periods—a straightforward optimization, but

beyond the scope of this paper. That said, this code can form

the basis for a production-quality RCU implementation [13].

Another limitation of the quiescent-state approach is that

applications requiring read-side critical sections in signal han-

dlers must disable signals around invocation of rcu_quies-

cent_state(), and for the duration of extended quiescent

states marked by rcu_thread_offline() and rcu_-

thread_online(). In addition, applications needing to

invoke synchronize_rcu()while holding a lock must en-

sure that all acquisitions of that lock invoke rcu_thread_-

offline(), presumably via a wrapper function encapsulat-

ing the lock-acquisition primitive. Applications needing read-

side critical sections within signal handlers or that need to

invoke synchronize_rcu() while holding a lock might

therefore be better served by the RCU implementations de-

scribed in subsequent sections.

A semi-formal verification that this implementation satisfies

the grace-period guarantee (in the absence of overflow) is

presented in Appendix F.

The next section discusses an RCU implementation that is

safe for use in libraries, the tradeoff being higher read-side

overhead.

1 #define RCU_GP_CTR_PHASE 0x10000

2 #define RCU_NEST_MASK 0x0ffff

3 #define RCU_NEST_COUNT 0x1

4

5 unsigned long rcu_gp_ctr = RCU_NEST_COUNT;

6

7 static inline void rcu_read_lock(void)

8 {

9 unsigned long tmp;

10

11 tmp = rcu_reader.ctr;

12 if (!(tmp & RCU_NEST_MASK)) {

13 STORE_SHARED(rcu_reader.ctr,

14 LOAD_SHARED(rcu_gp_ctr));

15 smp_mb();

16 } else {

17 STORE_SHARED(rcu_reader.ctr, tmp + RCU_NEST_COUNT);

18 }

19 }

20

21 static inline void rcu_read_unlock(void)

22 {

23 smp_mb();

24 STORE_SHARED(rcu_reader.ctr,

25 rcu_reader.ctr - RCU_NEST_COUNT);

26 }

Fig. 6. RCU Read Side Using Memory Barriers

3) General-Purpose RCU: The general-purpose RCU im-

plementation can be used in any software environment, in-

cluding library functions that are not aware of the design of

the calling application. Such library functions cannot guar-

antee that each application’s threads will invoke rcu_qui-

escent_state() sufficiently often, nor can they ensure

that threads will invoke rcu_thread_offline() and

rcu_thread_online() around each blocking system call.

General-purpose RCU therefore does not require that these

three functions ever be invoked.

In addition, this general-purpose implementation avoids

the counter-overflow problem discussed in Appendix D2 by

using a different approach to track grace periods. Each grace

period is divided into two grace-period phases, and instead

of a free-running grace-period counter, a single-bit toggle is

used to number the phases within a grace period. A given

phase completes only after each thread’s local snapshot either

contains a copy of the phase’s number or indicates the thread

is in a quiescent state. If RCU read-side critical sections are

finite in duration, one of these two cases must eventually hold

for each thread.

Because reader threads snapshot the value of rcu_gp_ctr

whenever they enter an outermost read-side critical section,

explicit tracking of critical-section nesting is required. Never-

theless, the extra read-side overhead is significantly less than

a single compare-and-swap operation on most hardware, and a

beneficial side effect is that all quiescent states are effectively

extended quiescent states. Read-side critical-section nesting is

tracked in the lower-order bits (RCU_NEST_MASK) of the per-

thread rcu_reader.ctr variable, as shown in Figure 6.

The grace-period phase number occupies only a single high-

order bit (RCU_GP_CTR_PHASE), so there is ample room to

store the nesting level.

The rcu_read_lock() function first checks the per-

thread nesting level to see if the calling thread was previously

in a quiescent state, snapshotting the global rcu_gp_ctr

grace-period phase number [15] and executing a memory
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1 void synchronize_rcu(void)

2 {

3 smp_mb();

4 mutex_lock(&rcu_gp_lock);

5 update_counter_and_wait();

6 barrier()

7 update_counter_and_wait();

8 mutex_unlock(&rcu_gp_lock);

9 smp_mb();

10 }

11

12 static void update_counter_and_wait(void)

13 {

14 struct rcu_reader *index;

15

16 STORE_SHARED(rcu_gp_ctr,

17 rcu_gp_ctr ˆ RCU_GP_CTR_PHASE);

18 barrier();

19 list_for_each_entry(index, &registry, node) {

20 while (rcu_gp_ongoing(&index->ctr))

21 msleep(10);

22 }

23 }

24

25 static inline int rcu_gp_ongoing(unsigned long *ctr)

26 {

27 unsigned long v;

28

29 v = LOAD_SHARED(*ctr);

30 return (v & RCU_NEST_MASK) &&

31 ((v ˆ rcu_gp_ctr) & RCU_GP_CTR_PHASE);

32 }

Fig. 7. RCU Update Side Using Memory Barriers

barrier if it was, and otherwise simply incrementing the nesting

level without changing the phase number. The low-order bits of

rcu_gp_ctr are permanently set to show a nesting level of

1, so that the snapshot can store both the current phase number

and the initial nesting level in a single atomic operation. The

memory barrier ensures that the store to rcu_reader.ctr

will be ordered before any access in the subsequent RCU

read-side critical section. The rcu_read_unlock() func-

tion executes a memory barrier and decrements the nesting

level. The memory barrier ensures that any access in the

prior RCU read-side critical section is ordered before the

nesting-level decrement.7 Even with the memory barriers,

both rcu_read_lock() and rcu_read_unlock() are

wait-free with maximum overhead smaller than many other

synchronization primitives. Because they may be implemented

as empty functions, rcu_quiescent_state(), rcu_-

thread_offline(), and rcu_thread_online() are

omitted.

Figure 7 shows synchronize_rcu() and its two

helper functions, update_counter_and_wait() and

rcu_gp_ongoing(). The synchronize_rcu() func-

tion forces ordering of the caller’s accesses (lines 3 and 9)

and waits for two grace-period phases under the protection

of rcu_gp_lock, as discussed earlier. The two phases are

separated by a barrier() to prevent the compiler from

interleaving their accesses, which could result in starvation.

The update_counter_and_wait() function is invoked

to handle each grace-period phase. This function is similar to

its counterpart in Figure 5, the only difference being that the

update to rcu_gp_ctr toggles the phase number rather than

7In C++0x, the weaker store(memory_order_release) barrier
would suffice, but it is not supported by gcc.

incrementing a counter. The rcu_gp_ongoing() function

is likewise similar to its earlier counterpart; it tests whether

the specified snapshot indicates that the corresponding thread

is in a non-quiescent state (the nesting level is nonzero)

with a phase number different from the current value in

rcu_gp_ctr.

To show why this works, let us verify that this two-phase

approach properly obeys RCU’s semantics, i.e., that any read-

side critical section in progress when synchronize_rcu()

begins will terminate before it ends. Suppose thread T is in a

read-side critical section. Until the critical section terminates,

T ’s rcu_reader.ctr will show a nonzero nesting level,

and its snapshot of the phase number will not change (since

the phase number in rcu_reader.ctr changes only during

an outermost rcu_read_lock() call). The invocation of

update_counter_and_wait() during one of synch-

ronize_rcu()’s grace-period phases will wait until T ’s

phase-number snapshot takes on the value 0, whereas the

invocation during the other phase will wait until the phase-

number snapshot takes on the value 1. Each of the two

invocations will also complete if T ’s nesting level takes on

the value 0. But regardless of how this works out, it is clearly

impossible for both phases to end before T ’s read-side critical

section has terminated. Appendix G presents a semi-formal

verification of this reasoning.

A natural question is “Why doesn’t a single grace-period

phase suffice?” If synchronize_rcu() used a single

phase then it would be essentially the same as the function

in Figure 5, and it would be subject to the same overflow

problem, exacerbated by the use of what is effectively a single-

bit counter. In more detail, the following could occur:

1) Thread T invokes rcu_read_lock(), fetching the

value of rcu_gp_ctr, but not yet storing it.

2) Thread U invokes synchronize_rcu(), including

invoking update_counter_and_wait(), where it

toggles the grace-period phase number in rcu_gp_ctr

so that the phase number is now 1.

3) Because no thread is yet in an RCU read-side criti-

cal section, thread U completes update_counter_-

and_wait() and returns to synchronize_rcu(),

which returns to its caller since it uses only one phase.

4) Thread T now stores the old value of rcu_gp_ctr,

with its phase-number snapshot of 0, and proceeds into

its read-side critical section.

5) Thread U invokes synchronize_rcu() once more,

again toggling the global grace-period phase number, so

that the number is again 0.

6) When Thread U examines Thread T ’s rcu_reader.-

ctr variable, it finds that the phase number in the snap-

shot matches that of the global variable rcu_gp_ctr.

Thread U therefore exits from synchronize_rcu().

7) But Thread T is still in its read-side critical section, in

violation of RCU’s semantics.

The extra overhead of a second grace-period phase is not

regarded as a serious drawback since it affects only updaters,

not readers. The overhead of the read-side memory barriers

is more worrisome; the next section shows how it can be
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1 static inline void rcu_read_lock(void)

2 {

3 unsigned long tmp;

4

5 tmp = rcu_reader.ctr;

6 if (!(tmp & RCU_NEST_MASK)) {

7 STORE_SHARED(rcu_reader.ctr,

8 LOAD_SHARED(rcu_gp_ctr));

9 barrier();

10 } else {

11 STORE_SHARED(rcu_reader.ctr, tmp + RCU_NEST_COUNT);

12 }

13 }

14

15 static inline void rcu_read_unlock(void)

16 {

17 barrier();

18 STORE_SHARED(rcu_reader.ctr,

19 rcu_reader.ctr - RCU_NEST_COUNT);

20 }

Fig. 8. RCU Read Side Using Signals

1 void synchronize_rcu(void)

2 {

3 mutex_lock(&rcu_gp_lock);

4 force_mb_all_threads();

5 update_counter_and_wait();

6 barrier();

7 update_counter_and_wait();

8 force_mb_all_threads();

9 mutex_unlock(&rcu_gp_lock);

10 }

Fig. 9. RCU Update Side Using Signals

eliminated.

4) Low-Overhead RCU Via Signal Handling: On com-

mon multiprocessor hardware, the largest source of read-side

overhead for general-purpose RCU is the memory barriers.

One novel way to eliminate these barriers is to send POSIX

signals from the update-side primitives. An unexpected but

quite pleasant surprise is that this approach results in relatively

simple read-side primitives. In contrast, those of older versions

of the Linux kernel’s preemptible RCU were notoriously

complex [16].

The read-side primitives shown in Figure 8 are identical

to those in Figure 6, except that lines 9 and 17 replace the

memory barriers with compiler directives that suppress code-

motion optimizations. The structures, variables, and constants

are identical to those in Figures 3 and 6. As with the previous

two implementations, both rcu_read_lock() and rcu_-

read_unlock() are wait-free.

The synchronize_rcu() primitive shown in Figure 9

is similar to that in Figure 7, the only changes being in

lines 3–4 and 8–9. Instead of executing a memory barrier

local to the current thread, this implementation forces all

threads to execute a memory barrier using force_mb_-

all_threads(), and the two calls to this new function are

moved inside the locked region because of the need to iterate

over the thread registry, which is protected by rcu_gp_-

lock. The update_counter_and_wait() and rcu_-

gp_ongoing() routines are identical to those in Figure 7

and are therefore omitted.

Figure 10 shows the signal-handling functions force_-

1 static void force_mb_all_threads(void)

2 {

3 struct rcu_reader *index;

4

5 list_for_each_entry(index, &registry, node) {

6 STORE_SHARED(index->need_mb, 1);

7 smp_mb();

8 pthread_kill(index->tid, SIGRCU);

9 }

10 list_for_each_entry(index, &registry, node) {

11 while (LOAD_SHARED(index->need_mb))

12 msleep(1);

13 }

14 smp_mb();

15 }

16

17 static void sigurcu_handler(int signo,

18 siginfo_t *siginfo,

19 void *context)

20 {

21 smp_mb();

22 STORE_SHARED(rcu_reader.need_mb, 0);

23 smp_mb();

24 }

Fig. 10. RCU Signal Handling for Updates

mb_all_threads() and sigurcu_handler().8 Of

course, these signals must be used carefully to avoid de-

stroying the readers’ wait-free properties, hence the serializa-

tion of synchronize_rcu(). With simple batching tech-

niques, concurrent invocations of synchronize_rcu()

could share a single RCU grace period.

The force_mb_all_threads() function is invoked

from synchronize_rcu(). It ensures a memory barrier is

executed on each running thread by sending a POSIX signal

to all threads and then waiting for each to respond. As shown

in Appendix H, this has the effect of promoting compiler-

ordering directives such as barrier() to full memory

barriers, while allowing reader threads to avoid the overhead of

memory barriers when they are not needed. An initial iteration

over all threads sets each need_mb per-thread variable to

1, ensures that this assignment will be seen by the signal

handler, and sends a POSIX signal. A second iteration then

rescans the threads, waiting until each one has responded

by setting its need_mb per-thread variable back to zero.9

Because some versions of some operating systems can lose

signals, a production-quality implementation will resend the

signal if a response is not received in a timely fashion. Finally,

there is a memory barrier to ensure that the signals have been

received and acknowledged before later operations that might

otherwise destructively interfere with readers.

The signal handler runs in the context of a reader thread

in response to the signal sent in line 8. This sigurcu_-

handler() function executes a pair of memory barriers

enclosing an assignment of its need_mb per-thread variable

to zero. The effect is to place a full memory barrier at the

8Some operating systems provide a facility to flush CPU write buffers for
all running threads in a given process. Such a facility, where available, can
replace the signals.

9The thread-list scans here and in Figures 5 and 7 are protected by rcu_-

gp_lock. Since the thread-registry list is read-mostly (it is updated only
by rcu_register_thread() and rcu_unregister_thread()), it
would appear to be a good candidate for RCU protection. Exercise for the
reader: Determine what changes to the implementation would be needed to
carry this out.
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1 void call_rcu(struct rcu_head *head,

2 void (*func)(struct rcu_head *head))

3 {

4 head->func = func;

5 head->next = NULL;

6 enqueue(head, &rcu_data);

7 }

8

9 void call_rcu_cleanup(void)

10 {

11 struct rcu_head *next;

12 struct rcu_head *wait;

13

14 for (;;) {

15 wait = dequeue_all(&rcu_data);

16 if (wait) {

17 synchronize_rcu();

18 while (wait) {

19 next = wait->next;

20 wait->func(wait);

21 wait = next;

22 }

23 }

24 msleep(1);

25 }

26 }

Fig. 11. Avoiding Update-Side Blocking by RCU

point in the receiver’s code that was interrupted by the signal,

preventing the CPU from reordering memory references across

that point.

A proof of correctness for this implementation is the

subject of another paper [17]. Of course, as with the other

two RCU implementations, this implementation’s synchro-

nize_rcu() primitive is blocking. The next section shows

a way to provide non-blocking RCU updates.

5) Non-Blocking RCU Updates: Although some algorithms

use RCU as a first-class technique, RCU is often used only to

defer memory reclamation. In these situations, given sufficient

memory, synchronize_rcu() need not block the update

itself, just as automatic garbage collectors need not block non-

blocking algorithms. The functions detailed here can be used

to perform batched RCU callback execution, allowing multiple

callbacks to execute after a grace period has passed.

One way of accomplishing this is shown in Figure 11, which

implements the asynchronous call_rcu() primitive found

in the Linux kernel. The function initializes an RCU callback

structure and uses a non-blocking enqueue algorithm [18]

to add the callback to the rcu_data list. Given that the

call_rcu() function contains but two simple (and therefore

wait-free) assignment statements and an invocation of the

non-blocking enqueue() function, call_rcu() is clearly

non-blocking. Systems providing an atomic swap instruction

can implement a wait-free call_rcu() via the wait-free

enqueue algorithm used by some queued locks [19].

A separate thread would remove and invoke these callbacks

after a grace period has elapsed, by calling the call_rcu_-

cleanup shown in Figure 11. On each pass through the

main loop, the function uses a (possibly blocking) dequeue

algorithm to remove all elements from the rcu_data list en

masse. If any elements were present, it waits for a grace period

to elapse and then invokes all the RCU callbacks dequeued

from the list. Finally, line 24 blocks for a short period to

allow additional RCU callbacks to be enqueued. The longer
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line 24 waits, the more RCU callbacks will accumulate on the

rcu_data list; this is a classic memory/CPU trade-off, with

longer waits allowing more memory to be occupied by RCU

callbacks but decreasing the per-callback CPU overhead.

Of course, the use of synchronize_rcu() causes

call_rcu_cleanup() to be blocking, so it should be

invoked in a separate thread from the updaters. However, if the

synchronization mechanism used to coordinate RCU updates

is non-blocking then the updater code paths will execute

two non-blocking code sequences in succession (the update

and call_rcu()), and will therefore themselves be non-

blocking.

E. Effects of Updates on Read-Side Performance

This section expands on the results in the printed paper.

The RCU read-side performance shown in Figures 12

and 13 (taken from the printed paper) trails off at high update

rates. In principle this could be caused either by the overhead

of quiescent-state detection on the write side or by cache

interference resulting from the data pointer exchanges. To

determine the cause, we defined ideal RCU performance to

include only the overheads of the grace periods, and compared

this ideal performance to that shown in the earlier figures. We

generated the ideal RCU workload by removing the memory

allocation and pointer exchanges from the update-side, but

we kept the rcu_defer() mechanism in order to take

into account the overhead of waiting for quiescent states.

Figures 14 and 15 present the resulting comparison, clearly
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showing that the non-linear read-side performance is caused

by the pointer exchanges rather than the grace periods.

F. Verification of Quiescent-State-Based Reclamation RCU

This appendix presents a semi-formal verification that the

QSBR implementation satisfies RCU’s grace-period guarantee.

Unfortunately it is not possible to prove this outright, owing

to the 32-bit wraparound failure discussed in Appendix D2.

We will therefore assume that such failures don’t occur.

Theorem: Assuming that threads are never preempted for

too long (see below), in any execution of a program using the

QSBR implementation, the grace-period guarantee (Formula 1

in Appendix C1) is satisfied.

Proof : Given QSBR’s implementation, we focus on ac-

tive segments: the periods between quiescent states. More

precisely, an active segment is a sequence of instruc-

tions bounded at the start by rcu_quiescent_state(),

rcu_thread_online(), or lines 12–15 of synchro-

nize_rcu() in Figure 5; bounded at the end by rcu_-

quiescent_state(), rcu_thread_offline(), or

lines 5–8 of synchronize_rcu() in Figure 5; and contain-

ing no other references to rcu_reader.ctr. Every read-

side critical section is part of an active segment.

Execution of the kth active segment in thread T (comprising

statements Rk,i together with some of the bounding state-

ments) can be represented as a sequence of labelled pseudo-

code instructions:

Ld(xk): xk = rcu_gp_ctr

St(xk): rcu_reader.ctrT = xk

MB0
k: smp_mb()

Rk,0; Rk,1; Rk,2; . . .

MB1
k: smp_mb()

Ld(yk): yk = (either rcu_gp_ctr or 0)
St(yk): rcu_reader.ctrT = yk

Here xk and yk are intermediate values and rcu_-

reader.ctrT refers to T ’s instance of the per-thread

rcu_reader structure. The Ld(yk) line sets yk to

rcu_gp_ctr if the active segment ends with rcu_quies-

cent_state() (in which case yk is xk+1, as the call will

also mark the beginning of the next active segment); otherwise

it sets yk to 0.

Execution of update_counter_and_wait() is of

course serialized by the rcu_gp_lock mutex. The nth oc-

currence of this routine, together with the statements preceding

(Mn,i) and following it (Dn,j), can be expressed so:

Mn,0; Mn,1; Mn,2; . . .

MB2
n: smp_mb()

. . .

Ld(zn): zn = rcu_gp_ctr + 2

St(zn): rcu_gp_ctr = zn
. . .

Ld(vn): vn =rcu_reader.ctrT

Asn: assert(vn = 0 or vn = zn)

. . .

MB3
n: smp_mb()

Dn,0; Dn,1; Dn,2; . . .

Several things are omitted from this summary, including

the list_for_each_entry() loop iterations for threads

other than T and all iterations of the while loop other

than the last (the assertion Asn holds precisely because this

is the last loop iteration). Both here and above, the use of

barrier(), LOAD_SHARED(), and STORE_SHARED()

primitives forces the compiler to generate the instructions in

the order shown. However the hardware is free to reorder them,

within the limits imposed by the memory barriers.

We number the grace periods starting from 1, letting St(z0)
stand for a fictitious instruction initializing rcu_gp_ctr

to 1 before the program starts. In this way each Ld(xk) is

preceded by some St(zn). Furthermore, because there are no

other assignments to rcu_gp_ctr, it is easy to see that for

each n, zn is equal to 2n+ 1 truncated to the number of bits

in an unsigned long.

Our initial assumption regarding overly-long preemption

now amounts to the requirement that not too many grace

periods occur between each Ld(xk) and the following St(xk).
Grace periods m through n−1 occur during this interval when

Ld(xk) → St(zm) and Ld(vn−1) → St(xk) (recall that “→”

indicates that the statement on the left executes prior to that on

the right). Under such conditions we therefore require n−m

to be sufficiently small that 2(n −m + 1) does not overflow

an unsigned long and hence zm−1 6= zn.

Let us now verify the grace-period guarantee for a read-side
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critical section occurring during thread T ’s active segment k

and for grace period n.

Case 1: St(zn) → Ld(xk). Since these two instructions both

access rcu_gp_ctr, the memory barrier property for MB2
n

and MB0
k says that Mn,i → Rk,j for each i, j. Thus Formula 1

in Appendix C1 holds because its left disjunct is true.

Case 2: Ld(vn) → St(xk). Since these two instructions both

access rcu_reader.ctrT , the memory barrier property for

MB2
n and MB0

k says that Mn,i → Rk,j for each i, j. The rest

follows as in Case 1.

Case 3: St(yk) → Ld(vn). Since these two instructions both

access rcu_reader.ctrT , the memory barrier property for

MB1
k and MB3

n says that Rk,i → Dn,j for each i, j. Thus

Formula 1 holds because its right disjunct is true.

Case 4: None of Cases 1–3 above. Since cache coherence

guarantees that loads and stores from all threads to a given

variable are totally ordered, it follows that Ld(xk) → St(zn)
and St(xk) → Ld(vn) → St(yk). We claim that this case can-

not occur without violating our assumption about wraparound

failures. Indeed, suppose it does occur, and take m to be the

least index for which Ld(xk) → St(zm). Clearly m ≤ n.

Since St(zm−1) → Ld(xk) → St(zm), xk must be equal to

zm−1. Similarly, vn must be equal to xk. Since zm−1 cannot

be 0, Asn implies that zm−1 = zn, and since m ≤ n, this is

possible only if 2(n−m+ 1) overflows (and hence n > m).

Now consider grace period n − 1. Since St(zm) pre-

cedes St(zn−1) we have Ld(xk) → St(zn−1), and since

Ld(vn−1) precedes Ld(vn) we also have Ld(vn−1) → St(yk).
If St(xk) → Ld(vn−1) then active segment k and grace

period n − 1 would also fall under Case 4, implying that

zm−1 = zn−1, which is impossible because zn−1 6= zn.

Hence we must have Ld(vn−1) → St(xk). But then m and n

would violate our requirement on the number of grace periods

elapsing between Ld(xk) and St(xk). QED.

G. Verification of General-Purpose RCU

This appendix presents a semi-formal verification that the

general-purpose implementation satisfies RCU’s grace-period

guarantee, assuming that read-side critical sections are not

nested too deeply.

Proof : Using the same notation as in Appendix F, execution

of the kth outermost read-side critical section in thread T can

be represented as follows:

xk,0 = rcu_gp_ctr

St(xk,0): rcu_reader.ctrT = xk,0

MB0
k: smp_mb()

{ Rk,0; Rk,1; Rk,2; . . .

St(xk,i): rcu_reader.ctrT = xk,i . . .}
MB1

k: smp_mb()

yk = rcu_reader.ctrT -

RCU_NEST_COUNT

St(yk): rcu_reader.ctrT = yk

Here xk,0 is the value read by LOAD_SHARED() in the

outermost rcu_read_lock(), xk,i for i > 0 corresponds

to the ith nested call by thread T to rcu_read_lock() or

rcu_read_unlock() in time order (the “{. . .}” notation

is intended to express that these calls are interspersed among

the Rk,i statements), and yk is the value in the STORE_-

SHARED() call in the rcu_read_unlock() that ends the

critical section. The memory barriers are present because this

is an outermost read-side critical section.

The nth occurrence of synchronize_rcu(), together

with the statements preceding and following it, can similarly

be expressed as:

Mn,0; Mn,1; Mn,2; . . .

MB2
n: smp_mb()

. . .

Tog0
n: rcu_gp_ctr ˆ= RCU_GP_CTR_PHASE

. . .

Ld(v0n): v0n =rcu_reader.ctrT

As0n: assert(v0n’s nesting level is 0 or its

phase number agrees with rcu_gp_ctr)

. . .

Tog1
n: rcu_gp_ctr ˆ= RCU_GP_CTR_PHASE

. . .

Ld(v1n): v1n =rcu_reader.ctrT

As1n: assert(v1n’s nesting level is 0 or its

phase number agrees with rcu_gp_ctr)

. . .

MB3
n: smp_mb()

Dn,0; Dn,1; Dn,2; . . .

As before, the assertions hold because these statements are

from the last iteration of the while loop for thread T . We

can now verify the grace-period guarantee for T ’s read-side

critical section k and for grace period n.

Case 1: Ld(vmn ) → St(xk,0), m = 0 or 1. Since these

instructions all access rcu_reader.ctrT , the memory

barrier property for MB2
n and MB0

k says that Mn,i → Rk,j

for each i, j. Thus Formula 1 in Appendix C1 holds because

its left disjunct is true.

Case 2: St(yk) → Ld(vmn ), m = 0 or 1. Then the memory

barrier property for MB1
k and MB3

n says that Rk,i → Dn,j for

each i, j. Thus Formula 1 holds because its right disjunct is

true.

Case 3: Neither of Cases 1–2 above. For each m we must

have St(xk,0) → Ld(vmn ) → St(yk); therefore v0n and v1n must

be equal to xk,i for some values of i ≥ 0. We are assuming

that the maximum nesting level of read-side critical sections

does not exceed the 16-bit capacity of RCU_NEST_MASK;

therefore each xk,i has a nonzero nesting level and has the

same phase number as xk,0, and the same must be true of

v0n and v1n. However the phase number of rcu_gp_ctr is

different in As0n and As1n, thanks to Tog1
n. Hence As0n and

As1n cannot both hold, implying that this case can never arise.

QED.

H. Verification of Barrier Promotion Using Signals

This appendix discusses how the signal-based RCU im-

plementation is able to “promote” compiler barriers to full-

fledged memory barriers. A more accurate, if less dra-

matic, statement is that the combination of barrier() and

force_mb_all_threads() obeys a strong form of the

fundamental ordering property of memory barriers. Namely,

if one thread executes the statements
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A0; A1; A2; . . . ; barrier(); B0; B1; B2; . . . ;

and another thread executes the statements

C0; C1; C2; . . . ; force_mb_all_threads();

D0; D1; D2; . . . ;

then either Ai → Dj (all i, j) or Ci → Bj (all i, j).

To see why, consider that the pthread_kill() call in

force_mb_all_threads() forces the first thread to in-

voke sigrcu_handler() at some place in its instruction

stream, either before all the Bj or after all the Ai (although

barrier() does not generate any executable code, it does

force the compiler to emit all the object code for the Ai

instructions before any of the Bj object code). Suppose

sigrcu_handler() is called after all the Ai. Then the

first thread actually executes

A0; A1; A2; . . . ; smp_mb();

STORE_SHARED(rcu_reader.need_mb, 0);

Since the second thread executes

LOAD_SHARED(index->need_mb); . . . ;

smp_mb(); D0; D1; D2; . . . ;

in its last loop iteration for the first thread and the following

statements, and since the LOAD_SHARED() sees the value

stored by the STORE_SHARED(), it follows that Ai → Dj

for all i, j. The case where sigrcu_handler() runs before

all the Bj can be analyzed similarly.
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