
Beyond per-CPU atomics
and rseq syscall:

subset of eBPF bytecode for the
do_on_cpu syscall

Linux Plumbers Conference 2019 – eBPF µconf

mathieu.desnoyers@efcios.com 

2

Restartable Sequences (RSEQ) in a nutshell

● System call registering user-space TLS data,
● TLS data acts as ABI between kernel and user-space,
● Enables user-space to implement efficient per-CPU data accesses.

3

The need for a system call fallback to RSEQ

● Concurrent update of remote user-space per-CPU data,
– Aware of CPU hotplug,

● Early/late per-CPU data use in libc initialization and thread life-time,
● Single-stepping through RSEQ with existing debuggers.

SYSCALL_DEFINE5(do_on_cpu,
 struct bpf_insn __user *, ubytecode, u32, len,
 int64_t __user *, uresult, int, cpu, int, flags)

4

do_on_cpu RSEQ fallback requirements

● Not a fast-path,
● Large number of eBPF programs can exist in user-space memory:

– Preloading them into the kernel is impractical wrt memory
consumption,

● Received as parameter from a system call for single-use,
● Execute on a specific CPU received as parameter,
● Preemption disabled critical sections (exclusive per-CPU data access),
● Only access user-space memory and interpreter registers: may fault

with preemption disabled.

5

do_on_cpu runtime interpreter

● Upstream Linux eBPF infrastructure not useful for do_on_cpu:
– Load/store of stack, kernel data,

– All calls to external functions,

– Most of eBPF verifier,

– eBPF bytecode to native code JIT,

● Currently, do_on_cpu implements its own:
– Bytecode validation,

– Bytecode interpreter (with loops support),

– User-space to kernel memory mapping translation.

6

Additional eBPF extensions required

● Define an eBPF memory model,
● New instructions specifying memory ordering:

– Load-acquire,

– Store-release,

– Memory barrier,

● Preemption disable/enable:
– Allow disabling preemption for short bounded critical sections,

– Minimize scheduler latency impact for preempt-RT.

7

Additional Slides (if required by discussion)

● Handling page-faults with preemption disabled,
● Handling execution mismatch between passes.

8

Handling page-faults with preemption disabled

● Multi-pass scheme:

1) Create kernel mapping of memory:
● Grab reference to each user-space page touched by bytecode,
● Create vmap aligned on same page colour as user-space pages (for

virtually-aliased architectures),
● Enable preemption and restart bytecode interpretation each time a new

page is added to the set,

2) Perform store side-effects.

9

Handling execution mismatch between passes

● Caused by changes in data loaded from user-space (tainted register):
– Address for load/store from/to user-space memory,

– Conditional branch,

● Handling of changes detected within pass (2) (store side-effects):
– Restart if change detected before any store side-effect,

– Return EIO (corruption detected) if change detected after side-effect
is visible to user-space.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

