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> Content

● Goals of Userspace RCU
● Userspace RCU History
● RCU Lock-Free Resizable Hash Tables
● Judy Arrays

– vs Red Black trees,

– RCU-awareness,

– node compaction,

– ongoing implementation and next steps.
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> Goals of Userspace RCU

● High speed,
● RT-aware,
● Scalable

– synchronization,

– data structures,

● ... in userspace.
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> Goals of Userspace RCU (2)

● Semantic similar to the Linux kernel,
● Useful for

– prototyping kernel code in user-space,

– porting kernel code to user-space,

● LGPLv2.1 license,
● Supports various architectures, and POSIX 

OSes.
● Linux most optimized, with fallbacks for other 

OS.
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> History of Userspace RCU

● Started in February 2009, initial intent to 
implement RCU in user-space,

● Low-overhead wait-wakeup scheme,
● call_rcu contributed by Paul E. McKenney 

(June 2011, version 0.6.0), implementing queue 
with wait-free enqueue.

● RCU lock-free resizable hash tables, presented 
at LPC2011: merged May 2012, version 0.7.0.

– Thanks to Lai Jiangshan, Paul E. McKenney 
and Stephen Hemminger for their help.
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> RCU Lock-Free Resizable Hash 
Tables

● Wait-free RCU single-node lookup, duplicate 
traversal, and traversal of the entire table,

● Lock-free updates, supporting:
– add (with duplicates),

– add_unique (return previous node if adding a 
duplicate),

– add_replace (replace duplicate)

● Updates offer uniqueness guarantees with 
respect to lookup and traversal operations.
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> RCU Lock-Free Resizable Hash 
Tables (2)

● Hash functions and compare functions are 
provided by the user,

● Organized as a linked list of nodes, with an 
index containing "bucket" elements linked 
within the list,

● On-the-fly resizing, with concurrent lookup, 
traversal, add and remove operations, is 
enabled by split-ordering the linked-list 
(ordering by reversed key bits).
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> Split-Ordering (expand)

Hash 
Bucket

0
1
2
3
4
5
6
7

Dummy Nodes: singly-linked list ordered by 
reversed hash bits

000  001  010  100  110

Note: example on 3 bits.

Linked list
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> Split-Ordering

Hash 
Bucket

0
1
2
3
4
5
6
7

Dummy Nodes: singly-linked list ordered by 
reversed hash bits

000  001  010  011  100  101  110  111

Note: example on 3 bits.

Linked list
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> RCU Lock-Free Resizable Hash 
Tables (3)

● Automatic resize is triggered by keeping track 
of the number of nodes in the hash table using 
split-counters. For small tables, bucket length is 
used as a trigger.

● Cache efficient index,
● Configurable node index memory management 

schemes, palatable for 64-bit (linear mapping), 
32-bit (order-based) address spaces, or for use 
with the Linux kernel page allocator (chunk-
based).
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> RCU Lock-Free Resizable Hash 
Tables Missing Features

● Rehashing
– Could probably take a lazy lock, since rare. 

(combining RCU read-side lock, a flag, 
synchronize_rcu, and a mutex).

● A hash table does not perform key-ordered 
traversals, inherent limitation to that structure. 
(no get next, get previous key)
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> Judy Arrays

● Jeremy Barnes, from Datacratic, pointed me to 
this interesting data structure for RCU use,

● Objective: provide a data container that:
– supports RCU lookups and traversals,

– allows ordered key traversals,

– supports scalable updates,

– cache-efficient,

– reasonably fast updates.
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> What is a Judy Array ?

● An array, indexed by key, for which queries are 
performed by a lookup through a multi-level 
lookup table. A rule of thumb makes a 256-ary 
trie a very interesting fit for a level of this lookup 
table.

● For each 256-ary node, use node compaction 
techniques tailored to the population density of 
this node to consume less memory.

● Design the node compaction scheme to 
minimize the number of cache lines that 
need to be accessed per lookup.
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> What is a Judy Array ?

2-level Judy Array for 16-bit key

0

1

2

leafs
Value: 2442 -> 0x98A

0x09

0x8A
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> State of the Art of Judy Array

● Invented by HP, LGPL v2.1 implementation
– http://judy.sourceforge.net/

● Claimed to do better than hash tables,
● Criticized for

– large and complex implementation (20k LOC)

– tailored to architecture-specific characteristics
● cache line size

– work would have to be re-done as computer 
architectures evolve.
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> Overcomplicated Design ?

● Workshop manual details various special-
cases,

● Thought maybe I could find a way to make it 
relatively simple, yet keeping efficiency, and 
add RCU-awareness, as well as architecture 
“future-proofness”.
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> Judy Array vs Red Black Trees

● Bounded, smaller number of cache lines 
touched for lookup in large population:

– 1M elements, 32-bit key: at most 8 cache lines 
loaded from memory with Judy (1 or 2 per 
node), 20 cache lines with RB trees.

● Fixed depth tree based on key size:
– No rebalancing,

– No transplant,

● No root node contention when distributing locks 
across the internal nodes with Judy.

RCU-friendly !
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> Judy Array vs Red Black Trees (2)

● No free lunch:
– need to perform node compaction in Judy,

– compared to fixed number of tree rotations and 
transplant in Red Black trees.
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> RCU-aware Node Compaction

● Node reference:
– Pointer to a node,

– Low bits contain compaction scheme selector,

– NULL pointer indicates no child.
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> Compaction Scheme: Linear

● Layout
– 8-bit unsigned integer: number of children 

populated

– Array of 8-bit values,

– Array of references (associated to values).

● 2 cache-line hits per successful lookup
– 1 for nr_children and array of values,

– 1 for associated reference. 
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> Compaction Scheme: Linear (2)

nr_children

1 byte 3 bytes 12 bytes (for 32-bit)
24 bytes (for 64-bit)

Total size:
16 bytes (32-bit)
28 bytes (64-bit)

associated referencesvalues

Linear search
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> Compaction Scheme: Pigeon Hole

● Pigeon Hole array,
● Simple array of 256 references, indexed by 

value.
● 1 cache line hit per successful lookup.

...
0         1          2         3         4          5         6         7         8          9
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> Portability

● Compaction scheme tailored to each power of 
two node size,

– Architecture independency, future-proofness,

● Need 8 compaction schemes that go from 1 to 
256 children node compaction schemes.

– 8 to 1024 bytes on 32-bit,

– 16 to 2048 bytes on 64-bit.

● A compaction scheme is missing to fill range 
between 2-cache-line hit “linear” and “pigeon 
hole” compaction schemes (2 sizes missing).
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> Bitmap (HP solution)

● Bitmap of 256-bit (32 bytes), fits in a cache line,
● Count active bits before the one looked up, get 

associated reference in following array (2 cache 
lines hit)

● Not RCU-friendly for delete: need reallocation 
at each delete.

● I thus prefer not going down that route.

0000 0001 0000 0100 0100 0000 0000 0000 ...
Linear search
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> Pool of Linear Arrays

● Build on the RCU-aware linear array nodes,
● Array of Linear Arrays,
● Split population of a node given a distribution 

into the respective linear array,
● e.g.: event/odd values could decide the 

population distribution into one of 2 linear 
arrays,
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> Pool of Linear Arrays (2)

● Even/odd is a choice of bit for distribution,
● Could be any of 8 bits of the keys,
● Choose the best bit choice to minimize 

unbalance of number of children in each linear 
array,

● This bit choice can be encoded as part of the 
encoding scheme selection in reference low 
bits.

● 2 cache line hits per successful lookup.
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> Pool of Linear Arrays (3)

... ... ... ...

Even values Odd values
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> Pool of Linear Arrays (4)

● Finding the worse possible unbalance for any 
given key distribution, given we can select the 
best bit for the given distribution, looks like a 
NP hard problem (not proven),

● Performed simulations with random 
distributions to find statistically good limits to 
trigger recompaction (> 99% of cases),

● Fall back on pigeon hole array if population 
does not fit.
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> Shadow Nodes

● Extra data needed for updates
– Locks, number of children within pigeon-hole 

array (to trigger recompaction on removal), 
rcu head pointer for delayed reclaim,

● Extra augmented range information,
● Locate this information outside of cache lines 

touched by lookups, outside of power-of-2-
sized nodes to limit memory space waste,

● Use RCU lock-free hash table to map nodes to 
shadow nodes.
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> Locking

● Distributed across internal nodes,
● Always taken from the bottom going up,
● Only nodes modified by add/removal need to 

have their lock taken,
● Good for update-side scalability for updates in 

different key ranges.
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> Update performance

● Only reallocate on recompaction and change of 
compaction type (even power of two),

– Amortized reallocation,

● Add an hysteresis in the min/max values that 
trigger node type change,

● Ensures add/remove cycles on the same key 
don't trigger frequent recompaction on min/max 
boundaries.
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> Ongoing RCU Judy Array               
            Implementation
● Warning: work in progress !
● git://git.dorsal.polymtl.ca/~compudj/userspace-

rcu urcu/rcuja-volatile branch
● What is implemented at this point:

– Add,

– Removal,

– RCU lookups,

– Duplicate nodes/key.
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> RCU Judy Array: Next Steps

● Testing, testing, testing,
● Benchmarks,
● Implement traversals (get next, get previous),
● Implement bit-distribution selection for pool 

nodes (currently an arbitrary choice),
● Add support for augmented trees (ranges).
● Could be nice to find ways to calculate the pool 

distribution worse-cases, if possible.
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> Questions ?

? ● http://www.efficios.com

● LTTng Information
● http://lttng.org
● lttng-dev@lists.lttng.org

● Userspace RCU library available at: 
http://lttng.org/urcu

http://www.efficios.com/
http://lttng.org/
mailto:lttng-dev@lists.lttng.org
http://lttng.org/urcu
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