
August 31th, 2012Mathieu Desnoyers 1

Linux Plumbers Conference
Scaling Microconference

RCU Judy Arrays: cache-efficient, compact, fast
and scalable trie

E-mail:
mathieu.desnoyers@efficios.com

mailto:mathieu.desnoyers@efficios.com

August 31th, 2012Mathieu Desnoyers 2

> Presenter

● Mathieu Desnoyers
● EfficiOS Inc.

● http://www.efficios.com

● Author/Maintainer of
● LTTng, LTTng-UST, Babeltrace, Userspace RCU

http://www.efficios.com/

August 31th, 2012Mathieu Desnoyers 3

> Content

● Goals of Userspace RCU
● Userspace RCU History
● RCU Lock-Free Resizable Hash Tables
● Judy Arrays

– vs Red Black trees,

– RCU-awareness,

– node compaction,

– ongoing implementation and next steps.

August 31th, 2012Mathieu Desnoyers 4

> Goals of Userspace RCU

● High speed,
● RT-aware,
● Scalable

– synchronization,

– data structures,

● ... in userspace.

August 31th, 2012Mathieu Desnoyers 5

> Goals of Userspace RCU (2)

● Semantic similar to the Linux kernel,
● Useful for

– prototyping kernel code in user-space,

– porting kernel code to user-space,

● LGPLv2.1 license,
● Supports various architectures, and POSIX

OSes.
● Linux most optimized, with fallbacks for other

OS.

August 31th, 2012Mathieu Desnoyers 6

> History of Userspace RCU

● Started in February 2009, initial intent to
implement RCU in user-space,

● Low-overhead wait-wakeup scheme,
● call_rcu contributed by Paul E. McKenney

(June 2011, version 0.6.0), implementing queue
with wait-free enqueue.

● RCU lock-free resizable hash tables, presented
at LPC2011: merged May 2012, version 0.7.0.

– Thanks to Lai Jiangshan, Paul E. McKenney
and Stephen Hemminger for their help.

August 31th, 2012Mathieu Desnoyers 7

> RCU Lock-Free Resizable Hash
Tables

● Wait-free RCU single-node lookup, duplicate
traversal, and traversal of the entire table,

● Lock-free updates, supporting:
– add (with duplicates),

– add_unique (return previous node if adding a
duplicate),

– add_replace (replace duplicate)

● Updates offer uniqueness guarantees with
respect to lookup and traversal operations.

August 31th, 2012Mathieu Desnoyers 8

> RCU Lock-Free Resizable Hash
Tables (2)

● Hash functions and compare functions are
provided by the user,

● Organized as a linked list of nodes, with an
index containing "bucket" elements linked
within the list,

● On-the-fly resizing, with concurrent lookup,
traversal, add and remove operations, is
enabled by split-ordering the linked-list
(ordering by reversed key bits).

September 8th, 2011Mathieu Desnoyers 9

> Split-Ordering (expand)

Hash
Bucket

0
1
2
3
4
5
6
7

Dummy Nodes: singly-linked list ordered by
reversed hash bits

000 001 010 100 110

Note: example on 3 bits.

Linked list

September 8th, 2011Mathieu Desnoyers 10

> Split-Ordering

Hash
Bucket

0
1
2
3
4
5
6
7

Dummy Nodes: singly-linked list ordered by
reversed hash bits

000 001 010 011 100 101 110 111

Note: example on 3 bits.

Linked list

August 31th, 2012Mathieu Desnoyers 11

> RCU Lock-Free Resizable Hash
Tables (3)

● Automatic resize is triggered by keeping track
of the number of nodes in the hash table using
split-counters. For small tables, bucket length is
used as a trigger.

● Cache efficient index,
● Configurable node index memory management

schemes, palatable for 64-bit (linear mapping),
32-bit (order-based) address spaces, or for use
with the Linux kernel page allocator (chunk-
based).

August 31th, 2012Mathieu Desnoyers 12

> RCU Lock-Free Resizable Hash
Tables Missing Features

● Rehashing
– Could probably take a lazy lock, since rare.

(combining RCU read-side lock, a flag,
synchronize_rcu, and a mutex).

● A hash table does not perform key-ordered
traversals, inherent limitation to that structure.
(no get next, get previous key)

August 31th, 2012Mathieu Desnoyers 13

> Judy Arrays

● Jeremy Barnes, from Datacratic, pointed me to
this interesting data structure for RCU use,

● Objective: provide a data container that:
– supports RCU lookups and traversals,

– allows ordered key traversals,

– supports scalable updates,

– cache-efficient,

– reasonably fast updates.

August 31th, 2012Mathieu Desnoyers 14

> What is a Judy Array ?

● An array, indexed by key, for which queries are
performed by a lookup through a multi-level
lookup table. A rule of thumb makes a 256-ary
trie a very interesting fit for a level of this lookup
table.

● For each 256-ary node, use node compaction
techniques tailored to the population density of
this node to consume less memory.

● Design the node compaction scheme to
minimize the number of cache lines that
need to be accessed per lookup.

August 31th, 2012Mathieu Desnoyers 15

> What is a Judy Array ?

2-level Judy Array for 16-bit key

0

1

2

leafs
Value: 2442 -> 0x98A

0x09

0x8A

August 31th, 2012Mathieu Desnoyers 16

> State of the Art of Judy Array

● Invented by HP, LGPL v2.1 implementation
– http://judy.sourceforge.net/

● Claimed to do better than hash tables,
● Criticized for

– large and complex implementation (20k LOC)

– tailored to architecture-specific characteristics
● cache line size

– work would have to be re-done as computer
architectures evolve.

August 31th, 2012Mathieu Desnoyers 17

> Overcomplicated Design ?

● Workshop manual details various special-
cases,

● Thought maybe I could find a way to make it
relatively simple, yet keeping efficiency, and
add RCU-awareness, as well as architecture
“future-proofness”.

August 31th, 2012Mathieu Desnoyers 18

> Judy Array vs Red Black Trees

● Bounded, smaller number of cache lines
touched for lookup in large population:

– 1M elements, 32-bit key: at most 8 cache lines
loaded from memory with Judy (1 or 2 per
node), 20 cache lines with RB trees.

● Fixed depth tree based on key size:
– No rebalancing,

– No transplant,

● No root node contention when distributing locks
across the internal nodes with Judy.

RCU-friendly !

August 31th, 2012Mathieu Desnoyers 19

> Judy Array vs Red Black Trees (2)

● No free lunch:
– need to perform node compaction in Judy,

– compared to fixed number of tree rotations and
transplant in Red Black trees.

August 31th, 2012Mathieu Desnoyers 20

> RCU-aware Node Compaction

● Node reference:
– Pointer to a node,

– Low bits contain compaction scheme selector,

– NULL pointer indicates no child.

August 31th, 2012Mathieu Desnoyers 21

> Compaction Scheme: Linear

● Layout
– 8-bit unsigned integer: number of children

populated

– Array of 8-bit values,

– Array of references (associated to values).

● 2 cache-line hits per successful lookup
– 1 for nr_children and array of values,

– 1 for associated reference.

August 31th, 2012Mathieu Desnoyers 22

> Compaction Scheme: Linear (2)

nr_children

1 byte 3 bytes 12 bytes (for 32-bit)
24 bytes (for 64-bit)

Total size:
16 bytes (32-bit)
28 bytes (64-bit)

associated referencesvalues

Linear search

August 31th, 2012Mathieu Desnoyers 23

> Compaction Scheme: Pigeon Hole

● Pigeon Hole array,
● Simple array of 256 references, indexed by

value.
● 1 cache line hit per successful lookup.

...
0 1 2 3 4 5 6 7 8 9

August 31th, 2012Mathieu Desnoyers 24

> Portability

● Compaction scheme tailored to each power of
two node size,

– Architecture independency, future-proofness,

● Need 8 compaction schemes that go from 1 to
256 children node compaction schemes.

– 8 to 1024 bytes on 32-bit,

– 16 to 2048 bytes on 64-bit.

● A compaction scheme is missing to fill range
between 2-cache-line hit “linear” and “pigeon
hole” compaction schemes (2 sizes missing).

August 31th, 2012Mathieu Desnoyers 25

> Bitmap (HP solution)

● Bitmap of 256-bit (32 bytes), fits in a cache line,
● Count active bits before the one looked up, get

associated reference in following array (2 cache
lines hit)

● Not RCU-friendly for delete: need reallocation
at each delete.

● I thus prefer not going down that route.

0000 0001 0000 0100 0100 0000 0000 0000 ...
Linear search

August 31th, 2012Mathieu Desnoyers 26

> Pool of Linear Arrays

● Build on the RCU-aware linear array nodes,
● Array of Linear Arrays,
● Split population of a node given a distribution

into the respective linear array,
● e.g.: event/odd values could decide the

population distribution into one of 2 linear
arrays,

August 31th, 2012Mathieu Desnoyers 27

> Pool of Linear Arrays (2)

● Even/odd is a choice of bit for distribution,
● Could be any of 8 bits of the keys,
● Choose the best bit choice to minimize

unbalance of number of children in each linear
array,

● This bit choice can be encoded as part of the
encoding scheme selection in reference low
bits.

● 2 cache line hits per successful lookup.

August 31th, 2012Mathieu Desnoyers 28

> Pool of Linear Arrays (3)

...

Even values Odd values

August 31th, 2012Mathieu Desnoyers 29

> Pool of Linear Arrays (4)

● Finding the worse possible unbalance for any
given key distribution, given we can select the
best bit for the given distribution, looks like a
NP hard problem (not proven),

● Performed simulations with random
distributions to find statistically good limits to
trigger recompaction (> 99% of cases),

● Fall back on pigeon hole array if population
does not fit.

August 31th, 2012Mathieu Desnoyers 30

> Shadow Nodes

● Extra data needed for updates
– Locks, number of children within pigeon-hole

array (to trigger recompaction on removal),
rcu head pointer for delayed reclaim,

● Extra augmented range information,
● Locate this information outside of cache lines

touched by lookups, outside of power-of-2-
sized nodes to limit memory space waste,

● Use RCU lock-free hash table to map nodes to
shadow nodes.

August 31th, 2012Mathieu Desnoyers 31

> Locking

● Distributed across internal nodes,
● Always taken from the bottom going up,
● Only nodes modified by add/removal need to

have their lock taken,
● Good for update-side scalability for updates in

different key ranges.

August 31th, 2012Mathieu Desnoyers 32

> Update performance

● Only reallocate on recompaction and change of
compaction type (even power of two),

– Amortized reallocation,

● Add an hysteresis in the min/max values that
trigger node type change,

● Ensures add/remove cycles on the same key
don't trigger frequent recompaction on min/max
boundaries.

August 31th, 2012Mathieu Desnoyers 33

> Ongoing RCU Judy Array
 Implementation
● Warning: work in progress !
● git://git.dorsal.polymtl.ca/~compudj/userspace-

rcu urcu/rcuja-volatile branch
● What is implemented at this point:

– Add,

– Removal,

– RCU lookups,

– Duplicate nodes/key.

August 31th, 2012Mathieu Desnoyers 34

> RCU Judy Array: Next Steps

● Testing, testing, testing,
● Benchmarks,
● Implement traversals (get next, get previous),
● Implement bit-distribution selection for pool

nodes (currently an arbitrary choice),
● Add support for augmented trees (ranges).
● Could be nice to find ways to calculate the pool

distribution worse-cases, if possible.

August 31th, 2012Mathieu Desnoyers 35

> Questions ?

? ● http://www.efficios.com

● LTTng Information
● http://lttng.org
● lttng-dev@lists.lttng.org

● Userspace RCU library available at:
http://lttng.org/urcu

http://www.efficios.com/
http://lttng.org/
mailto:lttng-dev@lists.lttng.org
http://lttng.org/urcu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

