
September 8th, 2011Mathieu Desnoyers 1

Linux Plumbers Conference 2011

Userspace RCU Library: RCU Synchronization
and RCU/Lock-Free Data Containers for

Userspace

E-mail:
mathieu.desnoyers@efficios.com

mailto:mathieu.desnoyers@efficios.com

September 8th, 2011Mathieu Desnoyers 2

> Presenter

● Mathieu Desnoyers
● EfficiOS Inc.

● http://www.efficios.com

● Author/Maintainer of
● LTTng, LTTng-UST, Babeltrace, LTTV, Userspace

RCU

http://www.efficios.com/

September 8th, 2011Mathieu Desnoyers 3

> Outline

● Userspace RCU
● Data structures
● User-space wake-up management

September 8th, 2011Mathieu Desnoyers 4

> Userspace RCU

● Initially motivated by the need for a RCU library
to perform efficient user-space tracing (LTTng-
UST project)

● Provides linear read-side scalability with
respect to number of cores.

● Released under LGPL license.

September 8th, 2011Mathieu Desnoyers 5

> Userspace RCU (2)

● All RCU flavors keep track of RCU readers on a
per-thread basis.

● No interaction with kernel-level scheduler.
● Current implementation requires pthreads for

thread management.

September 8th, 2011Mathieu Desnoyers 6

> Userspace RCU (3)

● 4 Userspace RCU flavors
– urcu-mb: memory-barrier based, uses read-side

critical section nesting counter. Friendly for
library usage.

– urcu-qsbr: reader threads report quiescent states
periodically. Lowest overhead.

– urcu-signal: similar to urcu-mb, but with lower
overhead. Reserves a signal number.

– urcu based on sys_membarrier (IPI scheme)
● Low-overhead and library-friendly.
● Waiting for system call mainlining (need users)

September 8th, 2011Mathieu Desnoyers 7

> Userspace RCU (4)

● call_rcu support
– Mechanism to support delayed execution

without blocking the caller.

– Configurable RCU worker threads:
● Per-thread
● Per-CPU
● Global

– Efficient xchg-based wait-free enqueue to
manage call_rcu work.

September 8th, 2011Mathieu Desnoyers 8

> Data Structures

● Mutex-protected double-linked lists
● RCU lock-free queue
● RCU lock-free stack
● RCU split-ordered lock-free resizable hash

table
● RCU red-black tree

September 8th, 2011Mathieu Desnoyers 9

> RCU Lock-Free Queue

● RCU read-side for cmpxchg ABA on enqueue and
dequeue.

● Allows concurrent enqueue and dequeue by not
sharing any cache-line except for the transiting nodes.

● Queue initialized with a dummy node.

● Dequeue allocate a dummy node before dequeuing
the last queue node. Dummy nodes are reclaimed
internally with call_rcu when dequeued.

● Assumes performance matters mainly when queue
has more than 1 element.

September 8th, 2011Mathieu Desnoyers 10

> RCU Lock-Free Queue
(benchmarks)

Benchmarks performed on a 2-sockets * 4 core/socket Intel Xeon Core2 2GHz with 16 GB ram.

September 8th, 2011Mathieu Desnoyers 11

> RCU Lock-Free Stack

● Uses RCU to deal with cmpxchg ABA on pop.
● Bottom of stack marked with a NULL node.

September 8th, 2011Mathieu Desnoyers 12

> RCU Lock-Free Stack
(benchmarks)

Benchmarks performed on a 2-sockets * 4 core/socket Intel Xeon Core2 2GHz with 16 GB ram.

September 8th, 2011Mathieu Desnoyers 13

> RCU Split-Ordered Lock-Free
Resizable Hash Table

● Based on prior work from
– Ori Shalev and Nir Shavit. Split-ordered lists:

Lock-free extensible hash tables. Journal of
the ACM 53 (May 2006), 379–405.

– Michael, M. M. High performance dynamic lock-
free hash tables and list-based sets. In
Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and
architectures, ACM Press, (2002), 73-82.

● State of the art: Josh Triplett articles.

September 8th, 2011Mathieu Desnoyers 14

> RCU Split-Ordered Lock-Free
Resizable Hash Table

● git.lttng.org userspace-rcu.git tree dev branches
– urcu/ht branch (expand only)

– urcu/ht-shrink (expand and shrink support)

September 8th, 2011Mathieu Desnoyers 15

> Split-Ordering (expand)

Hash
bucket
0
1
2
3
4
5
6
7

Dummy Nodes (singly-linked list ordered by
reversed hash bits)

000 001 010 100 110

Note: example on 3 bits.

September 8th, 2011Mathieu Desnoyers 16

> Split-Ordering

Hash
bucket
0
1
2
3
4
5
6
7

Dummy Nodes (singly-linked list ordered by
reversed hash bits)

000 001 010 011 100 101 110 111

Note: example on 3 bits.

September 8th, 2011Mathieu Desnoyers 17

> RCU Lookups

Hash
bucket
0
1
2
3

Dummy Nodes (singly-linked list ordered by
reversed hash bits)

000 010 011 100 110

Note: example on 3 bits.

RCU lookups use reverse hash
ordering to find nodes or detect they
are not present. It skips over
supplementary dummy nodes it
encounters, allowing concurrent
resizes.

September 8th, 2011Mathieu Desnoyers 18

> RCU Hash Table Add/Remove

● Lock-free singly-linked list
– Logical deletion (removed flag in next pointer)

followed by path compression

● Using cmpxchg with RCU read-side lock held to
deal with ABA.

● No memory allocated by add/remove.
● add_unique supported.

September 8th, 2011Mathieu Desnoyers 19

> RCU Hash Table Resize/Shrink

● Executes concurrently with add/remove/lookup.
● Resize operations are mutually exclusive with

each other.
● Re-use add/removal operations to insert

dummy nodes.
● Only the top-level lookup table needs to be

RCU-aware (lookups skip over extra dummy
nodes).

● No node reallocation (in-place resize).

September 8th, 2011Mathieu Desnoyers 20

> RCU Hash Table: cache-friendly
 structure
Order Table
(O(log(n))

Dummy node arrays (per-order)

...

0

1

2

3

4

5

6

September 8th, 2011Mathieu Desnoyers 21

> RCU Hash Table: automatic
 resize triggering
● Table size < 1024 nodes:

– Expand based on chain lengths (check on node
addition). Fine-grained expand-only.

● Table size >= 1024 nodes:
– Per-CPU split-counters, counting the number of

nodes in the table. Coarse-grained expand
and shrink.

● TODO: make add/remove help the resize
operation (for lock-free guarantee).

September 8th, 2011Mathieu Desnoyers 22

> RCU Lock-Free Hash Table
 (benchmarks)

Benchmarks performed on a 2-sockets * 4 core/socket Intel Xeon Core2 2GHz with 16 GB ram.

September 8th, 2011Mathieu Desnoyers 23

> RCU Lock-Free Hash Table
 (benchmarks)

Benchmarks performed on a 2-sockets * 4 core/socket Intel Xeon Core2 2GHz with 16 GB ram.

September 8th, 2011Mathieu Desnoyers 24

> RCU Lock-Free Hash Table
 (benchmarks)

Benchmarks performed on a 2-sockets * 4 core/socket Intel Xeon Core2 2GHz with 16 GB ram.

September 8th, 2011Mathieu Desnoyers 25

> RCU Red-Black Tree

● Implementation of RCU-adapted data
structures and operations.

– based on the RB tree algorithms found in
chapter 12 of Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third
Edition. The MIT Press, September 2009.

● State of the Art: Phil Howard articles.
● git.lttng.org userspace-rcu.git tree, rbtree2

branch.

September 8th, 2011Mathieu Desnoyers 26

> RCU Red-Black Tree

● RCU-specific adaptation
– Cluster scheme *.

– Node generations * (decay scheme *).

– RCU wait-free lookups and traversals.

– Updates protected by mutual exclusion, do not
need to wait for quiescent state.

– Tree lookup in O(log(n)), traversal in O(n).

– Allows duplicated entry values.

– Range-augmented (not detailed here).
* AFAIK, I made up these terms.

September 8th, 2011Mathieu Desnoyers 27

> Cluster Scheme

● A cluster is made of a group of RCU objects
that, if taken together as a black box from an
external observer point of view, will appear to
be unchanged before and after a structure
update operation.

● Cluster update overview:
– Copy cluster, modify cluster copy, set internal

pointers, set external pointers to the cluster.

September 8th, 2011Mathieu Desnoyers 28

> Cluster Scheme Applied to
 Red-Black Tree
● Decompose insert/removal into their constituent

phases:
– Rotation : cluster made of 3 nodes. Taken as a

black box, the cluster is viewed by observers
as the same entity before/after rotation.

– “Near Transplant”: child takes place of parent.
Cluster made of 1 node.

– “Far transplant” (which I call “Teleport”): a non-
immediate child replaces an uppermost
parent. Cluster is the entire chain involved
between the parent and child (includes child).

September 8th, 2011Mathieu Desnoyers 29

> Cluster for Rotations

y

x

b

Right rotation

y

x

b

Left rotation

September 8th, 2011Mathieu Desnoyers 30

> Node Generations

● Each Red-Black tree operation
(insertion/removal) require multiple basic steps
(rotations/transplant).

● Balanced Red-Black Tree Algorithm relatively
complex (changing its behavior is non-trivial).

● Need scheme that allows to always update the
most recent cluster created (no changes lost).

September 8th, 2011Mathieu Desnoyers 31

> Node Generations

● Solution: add a linked list of node “generations”
in each node.

● Each time a node is duplicated and pending for
removal (thus considered “old”), its generation
chain pointer is set to the new node version.

● Each time a node is accessed by the
algorithms, its generation chain is followed until
we reach the most recent node.

September 8th, 2011Mathieu Desnoyers 32

> Node Generations (in 3D!)

y

x

b

Right rotation

y'

x'

b'

Curved lines: generation chain

September 8th, 2011Mathieu Desnoyers 33

> Performance overhead

● Tradeoff: keeping the original algorithm at the
expense of frequent memory allocation/call_rcu
for memory reclaim.

● We therefore assume the memory allocator and
call_rcu are fast enough to provide acceptable
update performance.

September 8th, 2011Mathieu Desnoyers 34

> RCU Red-Black Tree
(benchmarks)

Benchmarks performed on a 2-sockets * 4 core/socket Intel Xeon Core2 2GHz with 16 GB ram.

September 8th, 2011Mathieu Desnoyers 35

> RCU Red-Black Tree
(benchmarks)

RCU vs non-RCU Red-Black tree comparison
1 writer only (mutex taken for 20 update batches)

updates/s
RCU 378504
Non-RCU, with mutex 937072
Speedup (RCU : non-RCU) 1 : 2.47

RCU vs non-RCU Red-Black tree comparison
7 readers/1 writer (mutex taken for 20 update batches)

lookups/s updates/s
RCU 30931000 378504
Non-RCU, with mutex 43000 937072
Speedup (RCU : non-RCU) 719 : 1 1 : 7.3

September 8th, 2011Mathieu Desnoyers 36

> Userspace Wake-up Management

● Direct use of sys_futex, with fall-back on
sleep/retry scheme if sys_futex is unavailable.

● No mutex involved, but memory ordering
MATTERS.

● 1 waker to N read-only waiters
● N wakers to 1 waiter

September 8th, 2011Mathieu Desnoyers 37

> 1 waker to N read-only waiters

● For root daemon which needs to signal its
present to many unprivileged applications.

● e.g. connect – fail – wait on futex value to
become “active” in a shared read-only POSIX
memory page.

● Daemon first set futex value to “active”, then
awakes all waiters on futex.

● Daemon sets futex value to inactive and closes
socket when on teardown.

September 8th, 2011Mathieu Desnoyers 38

> N wakers to 1 waiter

● Useful for RCU implementations
– rcu_read_unlock() are wakers

– synchronize_rcu() is waiter

● When no waiter is waiting, a simple load and
test is executed (small performance overhead
for wakers).

September 8th, 2011Mathieu Desnoyers 39

> N wakers to 1 waiter

● Waker unconditionally wakes the waiter if it
needs to be awakened.

● The waiting state is attached to a complex
condition, possibly changed from “false” to
“true” by the waker (non-atomically). This
condition is sampled by the waiter.

September 8th, 2011Mathieu Desnoyers 40

> N wakers to 1 waiter

int32_t value;

void waiter(void)
{
 for (;;) {
 value = -1;
 /* Store value before load condition */
 cmm_smp_mb();
 if (cond_is_true()) {
 value = 0;
 break;
 } else {
 if (value == -1) {
 futex(&value, FUTEX_WAIT, -1,
 NULL, NULL, 0);
 }
 }
 }
}

void waker(void)
{
 set_cond_true();
 /* Store condition before load value */
 cmm_smp_mb();
 if (value == -1) {
 value = 0;
 futex(&value, FUTEX_WAKE, 1, NULL, NULL, 0);
 }
}

September 8th, 2011Mathieu Desnoyers 41

> Questions ?

? – http://www.efficios.com

● Userspace RCU Information
– http://lttng.org/urcu

– ltt-dev@lists.casi.polymtl.ca

http://www.efficios.com/
http://lttng.org/urcu
mailto:ltt-dev@lists.casi.polymtl.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

