
August 11th, 2010Mathieu Desnoyers 1

LinuxCon 2010
Tracing Mini-Summit

A new unified Lockless Ring Buffer library for
efficient kernel tracing

Presentation at:
http://www.efficios.com/linuxcon2010-tracingsummit

E-mail:
mathieu.desnoyers@efficios.com

http://www.efficios.com/linuxcon2010-tracingsummit
mailto:mathieu.desnoyers@efficios.com

August 11th, 2010Mathieu Desnoyers 2

> Presenter

● Mathieu Desnoyers
● EfficiOS Inc.

● http://www.efficios.com

● Author/Maintainer of
● LTTng, LTTV, Userspace RCU

● Ph.D. in computer engineering
● Low-Impact Operating System Tracing

http://www.efficios.com/

August 11th, 2010Mathieu Desnoyers 3

> Plan

● History
● Mandate
● Genericity and Flexibility
● Speed and Compactness
● Reliability
● Working together

August 11th, 2010Mathieu Desnoyers 4

> History

● May 2005: LTTng implements its ring buffer
from scratch

– Learns lessons from K42, RelayFS and LTT.

● October 2005: LTTng becomes lock-less
– LTTng gets increasingly used by the industry

and shipped with many embedded and RT
Linux distributions since then.

● 2008: Ftrace (lock-less in 2009)
● 2010: Perf

August 11th, 2010Mathieu Desnoyers 5

> Mandate

● Wish from Linus expressed at the Kernel
Summit 2008 to have a common tracer
infrastructure in the kernel

● Asked by Steven Rostedt to come up with a
unified solution

August 11th, 2010Mathieu Desnoyers 6

> Generic Ring Buffer Library

● Input
– Data received as parameter from ring buffer

library clients

● Output
– Data available through a global or per-CPU file

descriptor with splice, mmap or read.

– Or data available internally to the ring buffer
client for reading

August 11th, 2010Mathieu Desnoyers 7

> Generic Ring Buffer Library

● Derived from the LTTng ring buffer
– Exists since 2005

● Goals
– Generic and flexible

– Clean API

– Fast and compact

– Reliable

August 11th, 2010Mathieu Desnoyers 8

> Genericity and Flexibility

● Target Perf, Ftrace, LTTng and drivers
● Not only tracer-specific

– Ring buffer sits in /lib

● Achieve genericity without hurting performance
– Ring buffer clients

– Instantiate client-specific configurations

– Express configuration into a constant client
structure passed as parameter to inline
functions

August 11th, 2010Mathieu Desnoyers 9

> API: pre-cooked (simple) APIs

● Create/destroy a channel
– Global buffer

– Per-CPU buffers

● In-kernel write()
● Read a file descriptor

– Global iterator
● The library does fusion merge of per-CPU buffer

events based on a heap and quiescent states

– Per-CPU iterator

August 11th, 2010Mathieu Desnoyers 10

> API: pre-cooked APIs

● Mode
– Overwrite

– Discard

● Channels
– Global

– Per-CPU
● Global iterators
● Per-CPU iterators

August 11th, 2010Mathieu Desnoyers 11

> Advanced API

● Client configuration
● Client-provided callbacks

August 11th, 2010Mathieu Desnoyers 12

> Configuration

● Buffers per-CPU or global
● Overwrite or discard mode
● Natural or packed alignment
● Output

– splice(), mmap(), read(), iterator, client-specific

● Memory allocation backend
– page, vmap, static

● OOPS consistency, IPI barrier, wakeup

August 11th, 2010Mathieu Desnoyers 13

> Client-provided callbacks

● Clock read
● Event and sub-buffer header size
● Sub-buffer begin/end
● Buffer create/finalize
● Record get

– For iterators

August 11th, 2010Mathieu Desnoyers 14

> Speed and Compactness

● Fast paths
– Constant configuration structure

– Compiler removes unused code

● Slow paths
– Configuration dynamically tested

– Same code shared amongst all clients

August 11th, 2010Mathieu Desnoyers 15

> Performance

● Throughput
● Scalability

August 11th, 2010Mathieu Desnoyers 16

> Throughput (overwrite mode)

● Generic Ring Buffer Library
– 83-199 ns/entry (depending on configuration)

● Ftrace
– 103-187 ns/entry

● Perf
– Mode unavailable

August 11th, 2010Mathieu Desnoyers 17

> Throughput (discard mode)

● Generic Ring Buffer Library
– 257 ns/entry written

● Perf
– 423 ns/entry written

● (approximation from Perf output)

● Getting accurate results is hard, influenced by
discarded events

August 11th, 2010Mathieu Desnoyers 18

> Scalability

August 11th, 2010Mathieu Desnoyers 19

> Reliability

● LTTng
– Formal verification of the ring buffer algorithm at

the architecture level (modeling execution on
superscalar processors)

– Testing on large user-base

August 11th, 2010Mathieu Desnoyers 20

> Working together

● Ever had the feeling you were trying to fit
something square-shaped into a circle ?

August 11th, 2010Mathieu Desnoyers 21

> Working together

● Need to polish off the rough spots

August 11th, 2010Mathieu Desnoyers 22

> Working together

● Trying to come up with a clean and flexible API
● Nevertheless, does not always map the current

Ftrace and Perf APIs
● Trying very hard not to bloat the API

August 11th, 2010Mathieu Desnoyers 23

> Working with Ftrace

● Steven has been very helpful
● I'm about 80% done working on Ftrace

transition to the generic ring buffer library

August 11th, 2010Mathieu Desnoyers 24

> Ftrace odd-fitting pieces

● Ftrace iteration code
– Huge set of API functions for iterating on

stopped trace buffers without consuming data.

– Used for:
● Dumping same output with "cat" many times
● Peek next item to place brackets in function

graph tracer output

– Could be replaced by "rewind" ability and by
modifying the function graph tracer plugin

August 11th, 2010Mathieu Desnoyers 25

> Perf

● mmap()-based ABI between kernel and user-
space for consuming data.

● No kernel callback invoked when the consumer
finishes reading data.

– Severely limits design choices

● Does not support (and developers don't
consider as valid use-case) reading data while
writing into a buffer in flight recorder mode.

August 11th, 2010Mathieu Desnoyers 26

> Perf

● Does not use padding between sub-buffers
– No concept of sub-buffers

– All events are physically contiguous

● Cannot create efficient chunks of data for
splice() without copy

● Cannot efficiently index trace without reading all
events (increases delay before a large trace
can be analyzed)

● Basic data encapsulation principles

August 11th, 2010Mathieu Desnoyers 27

> Perf

● Why do they hate sub-buffers so much ?
– Claim of simplicity

● False. The fast path ends up being both larger
and slower than the generic ring buffer.

● Why is this important ?
– Shows how low-level Perf design choices

prevent contributors from fulfilling end-user
basic use-cases.

– Shows Perf developers unwillingness to support
use-cases other than kernel developers own
needs.

August 11th, 2010Mathieu Desnoyers 28

> Funding

● Thanks to Ericsson for funding parts of this
work.

August 11th, 2010Mathieu Desnoyers 29

> Questions ?

? – http://www.efficios.com

● LTTng Information
– http://lttng.org

– ltt-dev@lists.casi.polymtl.ca

http://www.efficios.com/
http://lttng.org/
mailto:ltt-dev@lists.casi.polymtl.ca

August 11th, 2010Mathieu Desnoyers 30

> API (per-CPU discard)

extern struct channel *
ring_buffer_percpu_discard_create(size_t buf_size);

extern void
ring_buffer_percpu_discard_destroy(struct channel *chan);

extern int
ring_buffer_percpu_discard_write(struct channel *chan,
 const void *src,
 size_t len);

And map file operation "channel_payload_file_operations" from
iterator.h to file descriptor.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

