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LinuxCon 2010
Tracing Mini-Summit

A new unified Lockless Ring Buffer library for 
efficient kernel tracing

Presentation at:
http://www.efficios.com/linuxcon2010-tracingsummit

E-mail:
mathieu.desnoyers@efficios.com

http://www.efficios.com/linuxcon2010-tracingsummit
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> Presenter

● Mathieu Desnoyers
● EfficiOS Inc.

● http://www.efficios.com

● Author/Maintainer of
● LTTng, LTTV, Userspace RCU

● Ph.D. in computer engineering
● Low-Impact Operating System Tracing

http://www.efficios.com/
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> Plan

● History
● Mandate
● Genericity and Flexibility
● Speed and Compactness
● Reliability
● Working together
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> History

● May 2005: LTTng implements its ring buffer 
from scratch

– Learns lessons from K42, RelayFS and LTT.

● October 2005: LTTng becomes lock-less
– LTTng gets increasingly used by the industry 

and shipped with many embedded and RT 
Linux distributions since then.

● 2008: Ftrace (lock-less in 2009)
● 2010: Perf
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> Mandate

● Wish from Linus expressed at the Kernel 
Summit 2008 to have a common tracer 
infrastructure in the kernel

● Asked by Steven Rostedt to come up with a 
unified solution
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> Generic Ring Buffer Library

● Input
– Data received as parameter from ring buffer 

library clients

● Output
– Data available through a global or per-CPU file 

descriptor with splice, mmap or read.

– Or data available internally to the ring buffer 
client for reading
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> Generic Ring Buffer Library

● Derived from the LTTng ring buffer
– Exists since 2005

● Goals
– Generic and flexible

– Clean API

– Fast and compact

– Reliable
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> Genericity and Flexibility

● Target Perf, Ftrace, LTTng and drivers
● Not only tracer-specific

– Ring buffer sits in /lib

● Achieve genericity without hurting performance
– Ring buffer clients

– Instantiate client-specific configurations

– Express configuration into a constant client 
structure passed as parameter to inline 
functions
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> API: pre-cooked (simple) APIs

● Create/destroy a channel
– Global buffer

– Per-CPU buffers

● In-kernel write()
● Read a file descriptor

– Global iterator
● The library does fusion merge of per-CPU buffer 

events based on a heap and quiescent states

– Per-CPU iterator
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> API: pre-cooked APIs

● Mode
– Overwrite

– Discard

● Channels
– Global

– Per-CPU
● Global iterators
● Per-CPU iterators
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> Advanced API

● Client configuration
● Client-provided callbacks
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> Configuration

● Buffers per-CPU or global
● Overwrite or discard mode
● Natural or packed alignment
● Output

– splice(), mmap(), read(), iterator, client-specific

● Memory allocation backend
– page, vmap, static

● OOPS consistency, IPI barrier, wakeup
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> Client-provided callbacks

● Clock read
● Event and sub-buffer header size
● Sub-buffer begin/end
● Buffer create/finalize
● Record get

– For iterators
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> Speed and Compactness

● Fast paths
– Constant configuration structure

– Compiler removes unused code

● Slow paths
– Configuration dynamically tested

– Same code shared amongst all clients
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> Performance

● Throughput
● Scalability
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> Throughput (overwrite mode)

● Generic Ring Buffer Library
– 83-199 ns/entry (depending on configuration)

● Ftrace
– 103-187 ns/entry

● Perf
– Mode unavailable
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> Throughput (discard mode)

● Generic Ring Buffer Library
– 257 ns/entry written

● Perf
– 423 ns/entry written

● (approximation from Perf output)

● Getting accurate results is hard, influenced by 
discarded events



August 11th, 2010Mathieu Desnoyers 18

> Scalability
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> Reliability

● LTTng
– Formal verification of the ring buffer algorithm at 

the architecture level (modeling execution on 
superscalar processors)

– Testing on large user-base
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> Working together

● Ever had the feeling you were trying to fit 
something square-shaped into a circle ?
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> Working together

● Need to polish off the rough spots



August 11th, 2010Mathieu Desnoyers 22

> Working together

● Trying to come up with a clean and flexible API
● Nevertheless, does not always map the current 

Ftrace and Perf APIs
● Trying very hard not to bloat the API
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> Working with Ftrace

● Steven has been very helpful
● I'm about 80% done working on Ftrace 

transition to the generic ring buffer library
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> Ftrace odd-fitting pieces

● Ftrace iteration code
– Huge set of API functions for iterating on 

stopped trace buffers without consuming data.

– Used for:
● Dumping same output with "cat" many times
● Peek next item to place brackets in function 

graph tracer output

– Could be replaced by "rewind" ability and by 
modifying the function graph tracer plugin
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> Perf

● mmap()-based ABI between kernel and user-
space for consuming data.

● No kernel callback invoked when the consumer 
finishes reading data.

– Severely limits design choices

● Does not support (and developers don't 
consider as valid use-case) reading data while 
writing into a buffer in flight recorder mode.
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> Perf

● Does not use padding between sub-buffers
– No concept of sub-buffers

– All events are physically contiguous

● Cannot create efficient chunks of data for 
splice() without copy

● Cannot efficiently index trace without reading all 
events (increases delay before a large trace 
can be analyzed)

● Basic data encapsulation principles
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> Perf

● Why do they hate sub-buffers so much ?
– Claim of simplicity

● False. The fast path ends up being both larger 
and slower than the generic ring buffer.

● Why is this important ?
– Shows how low-level Perf design choices 

prevent contributors from fulfilling end-user 
basic use-cases.

– Shows Perf developers unwillingness to support 
use-cases other than kernel developers own 
needs.
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> Funding

● Thanks to Ericsson for funding parts of this 
work.
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> Questions ?

? – http://www.efficios.com

● LTTng Information
– http://lttng.org

– ltt-dev@lists.casi.polymtl.ca

http://www.efficios.com/
http://lttng.org/
mailto:ltt-dev@lists.casi.polymtl.ca
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> API (per-CPU discard)

extern struct channel *
ring_buffer_percpu_discard_create(size_t buf_size);

extern void
ring_buffer_percpu_discard_destroy(struct channel *chan);

extern int
ring_buffer_percpu_discard_write(struct channel *chan,
                                                     const void *src,
                                                     size_t len);

And map file operation "channel_payload_file_operations" from 
iterator.h to file descriptor.
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