Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

22 October 2013

P ——

__f__i-j?:: i}\

Introduction to RCU Concepts

Liberal application of procrastination for accommodation of the
laws of physics — for more than two decades!

© 2009 IBM Corporation

Mutual Exclusion

="\What mechanisms can enforce mutual exclusion?

© 2009 IBM Corporation

Example Application

© 2009 IBM Corporation

Example Application

" Schrodinger wants to construct an in-memory database for the

animals in his zoo (example from CACM article)
—Births result in insertions, deaths in deletions
—Queries from those interested in Schrodinger's animals
—Lots of short-lived animals such as mice: High update rate
—Great interest in Schrodinger's cat (perhaps queries from mice?)

4 © 2009 IBM Corporation

Example Application

" Schrodinger wants to construct an in-memory database for the

animals in his zoo (example in upcoming ACM Queue)
—Births result in insertions, deaths in deletions
—Queries from those interested in Schrodinger's animals
—Lots of short-lived animals such as mice: High update rate
—Great interest in Schrodinger's cat (perhaps queries from mice?)

" Simple approach: chained hash table with per-bucket locking

0 ook g rouse S cera
www

3: lock

5 © 2009 IBM Corporation

Example Application

" Schrodinger wants to construct an in-memory database for the

animals in his zoo (example in upcoming ACM Queue)
—Births result in insertions, deaths in deletions
—Queries from those interested in Schrodinger's animals
—Lots of short-lived animals such as mice: High update rate
—Great interest in Schrodinger's cat (perhaps queries from mice?)

" Simple approach: chained hash table with per-bucket locking

| 0:lock mmg mouse g zebra
\ Will holding this lock prevent the cat from dying?

6 © 2009 IBM Corporation

Read-Only Bucket-Locked Hash Table Performance

2GHz Intel Xeon Westmere-EX (64 CPUSs)
1024 hash buckets

Read-Only Bucket-Locked Hash Table Performance

Why the dropoff???

-
-
@)
O
4]

k%,

=
| -
()
o
wn
Q.
-]

X
@)
@)

—

10 20 30 40 50 60
Number of CPUs/Threads

2GHz Intel Xeon Westmere-EX, 1024 hash buckets

© 2009 IBM Corporation

Varying Number of Hash Buckets

-
-
@)
O
4]

k%,

=
| -
()
o
wn
Q.
-]

X
@)
@)

—

10 20 30 40 50
Number of CPUs/Threads

2GHz Intel Xeon Westmere-EX

© 2009 IBM Corporation

NUMA Effects???

" /sys/devices/system/cpu/cpuO/cache/index0/shared_cpu_list:
-0,32

" /sys/devices/system/cpu/cpuO/cache/indexl/shared cpu_list:
-0,32

" /sys/devices/system/cpu/cpuO/cache/index2/shared cpu_list:
-0,32

" /sys/devices/system/cpu/cpuO/cache/index3/shared cpu_list:
—-0-7,32-39

" Two hardware threads per core, eight cores per socket
"Try using only one CPU per socket: CPUs 0, 8, 16, and 24

1 © 2009 IBM Corporation

Bucket-Locked Hash Performance: 1 CPU/Socket

e
C
o)
3]
@

L

=
S
@
Q
7))
Q
-

=
)
o
—

1.5 2 2.5 3 3.5
Number of CPUs/Threads

2GHz Intel Xeon Westmere-EX: This is not the sort of
1 scalability Schrédinger requires!!! ©2009 IBM Corporation

Performance of Synchronization Mechanisms

© 2009 IBM Corporation

Problem With Physics #1: Finite Speed of Light

1 (c) 2012 Melissa Broussard, Creative Commons Share-Alike © 2009 IBM Corporation

Problem With Physics #2: Atomic Nature of Matter

flo complaints for eons,
and now, suddenly, we're

too DFH#E big?!

"
I fesl s0 fat! /

And our didlectric constant isn't big
Enoudl for them! They can do find
some other #$&*6 atom! Sheesh!

DEA1D

© 2009 IBM Corporation

(c) 2012 Melissa Broussard, Creative Commons Share-Alike

How Can Software Live With This Hardware???

© 2009 IBM Corporation

Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalability.
Also typically results in high complexity.

1 © 2009 IBM Corporation

Design Principle: Avoid Bottlenecks

Many instances of something good! Full partitioning even better!!!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.
But NUMA effects defeated this for per-bucket locking!!!

1 © 2009 IBM Corporation

Design Principle: Get Your Money's Worth

" If synchronization is expensive, use large critical sections

"On Nehalem, off-socket atomic operation costs ~260 cycles
—So instead of a single-cycle critical section, have a 26000-cycle critical
section, reducing synchronization overhead to about 1%

" Of course, we also need to keep contention low, which

usually means we want short critical sections
—Resolve this by applying parallelism at as high a level as possible
—Parallelize entire applications rather than low-level algorithms!

1 © 2009 IBM Corporation

Design Principle: Get Your Money's Worth

" If synchronization is expensive, use large critical sections

"On Nehalem, off-socket atomic operation costs ~260 cycles
—So instead of a single-cycle critical section, have a 26000-cycle critical
section, reducing synchronization overhead to about 1%

" Of course, we also need to keep contention low, which

usually means we want short critical sections
—Resolve this by applying parallelism at as high a level as possible
—Parallelize entire applications rather than low-level algorithms!
—But the low overhead hash-table insertion/deletion operations do not
provide much scope for long critical sections...

1 © 2009 IBM Corporation

Design Principle: Avoid Mutual Exclusion!!!

Plus lots of time waiting for the lock's cache line...

2 © 2009 IBM Corporation

Design Principle: Avoiding Mutual Exclusion

No Dead Time!

2 © 2009 IBM Corporation

But How Can This Possibly Be Implemented???

© 2009 IBM Corporation

But How Can This Possibly Be Implemented???

| think the poor

thing has expire

Where there is a brain-
wave, there is a wayl

© 2009 IBM Corporation

But How Can This Possibly Be Implemented???

Hazard Pointers and RCU!!I

© 2009 IBM Corporation

RCU: Keep It Basic: Guarantee Only Existence

" Pointer to RCU-protected object guaranteed to exist

throughout RCU read-side critical section

rcu read lock(); /* Start critical section. */
p = rcu dereference(cptr);

/* *p guaranteed to exist. */

do something with(p);

rcu read unlock(); /* End critical section. */
/* *p might be freed!!! */

"The rcu_read lock(), rcu_dereference() and
rcu_read_unlock() primitives are very light weight

"However, updaters must take care...

© 2009 IBM Corporation

RCU: How Updaters Guarantee Existence

" Updaters must wait for an RCU grace period to elapse between

making something inaccessible to readers and freeing it
spin_ lock(&updater lock);
q = cptr;
rcu _assign pointer(cptr, new p);
spin_unlock(&updater lock);
synchronize rcu(); /* Wait for grace period. */
kfree(q);

" RCU grace period waits for all pre-exiting readers to complete
their RCU read-side critical sections

"Next slides give diagram representation

2 © 2009 IBM Corporation

Publication of And Subscription to New Data

Key: |l Dangerous for updates: all readers can access

B sl dangerous for updates: pre-existing readers can access (next slide)

B safe for updates: inaccessible to all readers

-
S
Q
+—

=
(@]
o
c
(@)

initialization

rcu assi

/ /

tmp tmp

5 But if all we do is add, we have a big memory leak!!!

(cptr)

rcu_dereference

p:

© 2009 IBM Corporation

RCU Removal From Linked List

" Combines waiting for readers and multiple versions:
— Writer removes the cat's element from the list (list_del rcu())
— Writer waits for all readers to finish (synchronize_rcu())
— Writer can then free the cat's element (kfree())

One Version Two Versions One Version One Version

| g | .
£

boa

X

But if readers leave no trace in memory, how can we
2 possibly tell when they are done??? © 2009 1BM Corporation

Waiting for Pre-Existing Readers: QSBR

" Non-preemptive environment (CONFIG_PREEMPT=n)

— RCU readers are not permitted to block
— Same rule as for tasks holding spinlocks

© 2009 IBM Corporation

Waiting for Pre-Existing Readers: QSBR

" Non-preemptive environment (CONFIG_PREEMPT=n)

— RCU readers are not permitted to block
— Same rule as for tasks holding spinlocks

=" CPU context switch means all that CPU's readers are done

" Grace period begins after synchronize rcu() call and ends after all CPUs
execute a context switch

X
e\ .\'0
@(‘}6 xc”@\
o &
& ®
CPU 0 ~ 4 | >
|
i
crur el =] =l g -~
synchror_lize_rcu() i
CPU 2 — = >
o’a’—\ I >: }}@@
Oqe ' Grace Period Cop

3 © 2009 IBM Corporation

Performance

© 2009 IBM Corporation

1

cycle Full performance,
linear scaling,

RCU (wait-free) > H / real-time response

Theoretical Performance

/3 CPUs to
/ cycle break even with
|< 71.2 cycles >|l‘l‘ / a single CPU!
2 | unconenced [144 CPUS 1o
S break even with
S < a single CPUII!
E cycle i
é |‘ 71.2 cycles >|l‘ 71.2 cycles >|
—l

No Spinning
N

3 © 2009 IBM Corporation

Measured Performance

© 2009 IBM Corporation

Schrodinger's Zoo: Read-Only

100000

©
c
O
(&
)
N
=
-
()]
Q
%)
Q.
>
X
O
O
—
40!
r—
@]
|_

Number of CPUs/Threads

RCU and hazard pointers scale quite well!!! ,
3 © 2009 IBM Corporation

Schrodinger's Zoo: Read-Only Cat-Heavy Workload

100000

©
c
@]
O
O
B2
=
-
(]
(o}
%)
o
>
X~
o
@)
-
(4]
i
o
I_

0 10 20 30 40 50 60
Number of CPUs/Threads Looking Up The Cat

RCU handles locality quite well, hazard pointers not bad, bucket locking horribly ,
3 © 2009 IBM Corporation

Schrodinger's Zoo: Reads and Updates

Mechanism Reads | Falled Reads | Cat Reads | Adds | Deletes

(zlobal Lockmp (355
Per-Bucket Locking | 1.197
Hazard Pointers 27059

RO) | D 8T

© 2009 IBM Corporation

RCU Performance: “Free is a Very Good Price!l!”
And Nothing Is Faster Than Doing Nothing!!!

3 © 2009 IBM Corporation

RCU Area of Applicability

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms
(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Schrodinger's zoo is in blue: Can't tell exactly when an animal is born

or dies anyway! Plus, no lock you can hold will prevent an animal's death...)
3 © 2009 IBM Corporation

RCU Applicability to the Linux Kernel

© 2009 IBM Corporation

Summary

© 2009 IBM Corporation

Summary

" Synchronization overhead is a big issue for parallel programs

= Straightforward design techniques can avoid this overhead
—Partition the problem: “Many instances of something good!”
—Avoid expensive operations
—Avoid mutual exclusion

"RCU is part of the solution, as is hazard pointers
—Excellent for read-mostly data where staleness and inconsistency OK
—Good for read-mostly data where consistency is required
—Can be OK for read-write data where consistency is required

—Might not be best for update-mostly consistency-required data
* Provide existence guarantees that are useful for scalable updates
—Used heavily in the Linux kernel

" Much more information on RCU is available...

4 © 2009 IBM Corporation

Graphical Summary

Not only are they lazy, they
get more work done than | do

4 © 2009 IBM Corporation

To Probe Further:

" https://queue.acm.org/detail.cfm?id=2488549
— “Structured Deferral: Synchronization via Procrastination”
* http://doi.leeecomputersociety.org/10.1109/TPDS.2011.159 and
http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
—“User-Level Implementations of Read-Copy Update”
= git://lttng.org/userspace-rcu.git (User-space RCU git tree)
" http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf
— Applying RCU and weighted-balance tree to Linux mmap_sem.
" http://www.usenix.org/event/atcl1/tech/final_files/Triplett.pdf
— RCU-protected resizable hash tables, both in kernel and user space
" http://www.usenix.org/event/hotparll/tech/final_files/Howard.pdf
— Combining RCU and software transactional memory
* http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
" http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/
—“What is RCU?” Series
" http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14el.pdf
— RCU motivation, implementations, usage patterns, performance (micro+sys)
" http://www.livejournal.com/users/james_morris/2153.html
— System-level performance for SELinux workload: >500x improvement
" http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf
— Comparison of RCU and NBS (later appeared in JPDC)
* http://doi.acm.org/10.1145/1400097.1400099
— History of RCU in Linux (Linux changed RCU more than vice versa)
" http://read.seas.harvard.edu/cs261/2011/rcu.html
— Harvard University class notes on RCU (Courtesy Eddie Koher)
" http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

4

© 2009 IBM Corporation

Legal Statement

" This work represents the view of the author and does not necessarily represent
the view of IBM.

" IBM and IBM (logo) are trademarks or registered trademarks of International
Business Machines Corporation in the United States and/or other countries.

" Linux is a registered trademark of Linus Torvalds.

" Other company, product, and service names may be trademarks or service marks
of others.

" Credits:
— This material is based upon work supported by the National Science Foundation under Grant
No. CNS-0719851.
— Joint work with Mathieu Desnoyers, Alan Stern, Michel Dagenais, Manish Gupta, Maged
Michael, Phil Howard, Joshua Triplett, Jonathan Walpole, and the Linux kernel community.
— Additional reviewers: Carsten Weinhold and Mingming Cao.

4 © 2009 IBM Corporation

Questions?

Use
the right tool
for the job!!!

Image copyright © 2004 Melissa McKenney

© 2009 IBM Corporation

LinuxCon Europe 2013

Introduction to Userspace RCU
Data Structures

(C,:[ﬁClOS mathieu.desnoyers@efficios.com &4 |

Presenter

& Mathieu Desnoyers

EfficiOS Inc.

e http://www.efficios.com

23 Author/Maintainer of
e Userspace RCU,

e LTTng kernel and user-space tracers,

e Babeltrace. 2

1 Introduction to major Userspace RCU (URCU)
concepts,

23 URCU memory model,
[E URCU APIs

e Atomic operations, helpers, reference counting,
2 URCU Concurrent Data Structures (CDS)

e [.ists,

e Stacks,

e Queues,
 Hash tables. 3

Content (cont.)

"6" 2 OB Userspace RCU hands-on tutorial

Data Structure Characteristics

1= Scalability
@ Real-Time Response

@ Performance

Non-Blocking Algorithms

v Progress Guarantees
@ Lock-free

e guarantee of system progress.

O © © Wait-free

e also guarantee per-thread progress.

Memory Model

23 Weakly ordered architectures can reorder
Memory accesses

Initial conditions

x=0
y=0
CPUO0 CPU1
X =1; rl =vy;
y =1, r2 = X;

If r2 loads 0O, can r1 have loaded 1 ?

Memory Model

23 Weakly ordered architectures can reorder
Memory accesses

Initial conditions

x=0
y=0
CPUO0 CPU 1
X =1; rl =vy;
y =1, r2 = X;

If r2 loads 0O, can r1 have loaded 1 ?
YES s at leasts on many weakly-ordered architectures.

Memory Model

Summary of Memory Ordering

Paul E. McKenney, Memory Ordering in
Modern Microprocessors, Part II,

@ http://www.linuxjournal.com/article/8212

glal |5
- | c E
=11 = K}
=
5150953 3|50
gleltlgleoiDs
3|12lala|8|8|s|3
s lslelsl8l8]5[C
1 | @
5555 E
AR IHEBE
B I E
3|88/ 8B EB|E|E
C|c|C|C| =|=|5 &
Llalc|a
gl18/8|E|E|E|lT|s
g|la|lg|g|a|g
S|8|m|n|2|2|0lt
Alpha ¥YIY|IY|IY Y Y| Y |Y
AMDB4 ¥ ¥
|AB4 YIY|Y|Y|Y|Y A
(PA-RISC) YI¥Y|Y|Y
PA-RISC CPLUs
POWER YIY I YIYIY|Y Y
SPARC HMO YIYIYIYIY|Y Y
(SPARC P30) Y 1Y ¥ Y
SPARC TSSO ¥ Y
x86 Y |Y ¥ A
(%86 Q0 5tore)] |Y |Y |Y | Y A
ZSernes ¥ A

Memory Model

? But how comes we can usually expect those
accesses to be ordered ?

@& Mutual exclusion (locks) are the answer,

|5 They contain the appropriate memory barriers.

=’ But what happens if we want to do
synchronization without locks ?

|5 Need to provide our own memory ordering
guarantees.

10

Memory Model

e Userspace RCU

e Similar memory model as the Linux kernel, for
user-space.

e For details, see Linux Documentation/memory-
barriers.txt

11

Userspace RCU Memory Model

e urcu/arch.h

 memory ordering between processors
e cmm_smp_{mb,rmb,wmb }()
 memory mapped I/O, SMP and UP
e cmm_{mb,rmb,wmb}()

 eventual support for architectures with incoherent
caches

e cmm_smp_{mc,rmc,wmc }()

e urcu/compiler.h

e compiler-level memory access optimisation barrier

e cmm_barrier() 12

Userspace RCU Memory Model (cont.)

e urcu/system.h

e Inter-thread load and store

« CMM_LOAD_SHARED(),
« CMM_STORE_SHARED(),

e Semantic:

 Ensures aligned stores and loads to/from word-sized,
word-aligned data are performed atomically,

 Prevents compiler from merging and refetching
accesses.

e Deals with architectures with incoherent caches,

13

Userspace RCU Memory Model (cont.)

5 Atomic operations and data structure APIs have
their own memory ordering semantic
documented.

14

Userspace RCU Atomic Operations

e Similar to the Linux kernel atomic operations,

e urcw/uatomic.h

e uatomic_{add,sub,dec,inc)_return(),
uatomic_cmpxchg(), uatomic_xchg() imply full
memory barrier (smp_mb()).

e uatomic_{add,sub,dec,inc,or,and,read,set}() imply
no memory barrier.

« cmm_smp_mb__{before,after}_uatomic_*()
provide associated memory barriers.

15

Userspace RCU Helpers

e urcu/compiler.h

* Get pointer to structure containing a given field
from pointer to field.

e caa_container_of()

e urcu/compat-tls.h

e Thread-Local Storage

e Compiler __thread when available,
 Fallback on pthread keys,

« DECLARE_URCU_TLS(),

« DEFINE_URCU_TLS(),

« URCU_TLS().
16

Userspace RCU Reference Counting

* Reference counting based on Userspace RCU
atomic operations,

e urcu/ref.h

e urcu_ref_{set,init,get,put}()

17

URCU Concurrent Data Structures

e Navigating through URCU CDS API and
implementation

» Example of wait-free concurrent queue

e urcu/wicqueue.h: header to be included be
applications,

 [f LGPL_SOURCE is defined before include,
functions are inlined, else implementation in
liburcu-cds.so is called,

* urcu/wicqueue.h and wicqueue.c implement
exposed declarations and LGPL wrapping logic,

e Implementation is found in urcu/static/wfcqueue.h.
18

URCU lists
e Circular doubly-linked lists,
e [Linux kernel alike list API < : : >

e urcu/list.h

 cds_list_{add,add_tail,del,empty,replace,splice}()
 cds_list_for_each*()

e Linux kernel alike RCU list API

e Multiple RCU readers concurrent with single
updater.

e urcu/rculist.h

e cds_list_{add,add_tail,del,replace,for_each*}_rcu() 19

URCU hlist

e Linear doubly-linked lists,

|

e Similar to Linux kernel hlists,

e Meant to be used in hash tables, where size of list
head pointer matters,

e urcu/hlist.h
e cds_hlist_{add_head,del,for_each* }()
e urcu/rcuhlist.h
e cds_hlist_{add_head,del,for_each*}_rcu()

20

Stack (Wait-Free Push, Blocking Pop)

e urcu/wistack.h

—
N push/ N pop =
e Wait-free push S
e cds_wfs_push()
* Wait-free emptiness check
e cds_wfs_empty()
e Blocking/nonblocking pop

e _ cds_wfs_pop_blocking()
e _ cds_wfs_pop_nonblocking()

e subject to existence guarantee constraints

e Can be provided by either RCU or mutual exclusion
on pop and pop all.
21

Stack (Wait-Free Push, Blocking Pop)

e urcu/wistack.h (cont.)

* Wait-free pop all
— e _ cds_wfs 11
—cds_wis_pop_a 0 |
) e subject to existence guarantee constraints
S

e Can be provided by either RCU or mutual exclusion
on pop and pop all.

e Blocking/nonblocking iteration on stack returned
by pop all
e cds_wfs_for_each_blocking*()

e cds_wfs_first(), cds_wfs_next_blocking(),
cds_wfs_next_nonblocking()

22

[.ock-Free Stack

* urcu/lfstack.h —
E—
e N push /N pop Gl
* Wait-free emptiness check
e cds_Ifs_empty()
e Lock-free push
e cds_lfs_push()
* Lock-free pop
e _ cds_lfs_pop()

* subject to existence guarantee constraints

e Can be provided by either RCU or mutual exclusion
on pop and pop all.

23

[.ock-Free Stack

* urcu/lfstack.h (cont.)

* Lock-free pop all and iteration on the returned
stack

C e _ cds_lfs_pop_all()
— » subject to existence guarantee constraints
) Can be provided by either RCU or mutual exclusion
on pop and pop all.

 cds_Ifs_for_each*()

24

Wait-Free Concurrent Queue

e urcu/wicqueue.h

N enqueue / 1 dequeue q

* Wait-free enqueue
 cds_wfcq_enqueue()

* Wait-free emptiness check
e cds_wfcq_empty()

e Blocking/nonblocking dequeue

e _ cds_wfcq_dequeue_blocking()
e _ cds_wfcq_dequeue_nonblocking()

e Mutual exclusion of dequeue, splice and iteration
required.

25

Wait-Free Concurrent Queue

* urcu/wicqueue.h (cont.)

* Blocking/nonblocking splice (dequeue all)
e _ cds_wifcq_splice_blocking()

q e _ cds_wicq_splice_nonblocking()

e Mutual exclusion of dequeue, splice and iteration
required.

26

Wait-Free Concurrent Queue

* urcu/wicqueue.h (cont.)

* Blocking/nonblocking iteration q

e _ cds_wifcq_first_blocking()

e _ cds_wfcq_first_nonblocking()

e _ cds_wfcq_next_blocking()
 __cds_wfcq_next_nonblocking()

e _ cds_wfcq_for_each_blocking*()

e Mutual exclusion of dequeue, splice and iteration
required.

27

Wait-Free Concurrent Queue

* urcu/wicqueue.h (cont.)

» Splice operations can be chained, so N queues can
' be merged in N operations.
e Independent of the number of elements in each

queue.

28

Lock-Free Queue

e urcu/rculfqueue.h
* Requires RCU synchronization for queue nodes

e Lock-Free RCU enqueue

e cds_lfq_enqueue_rcu()

* Lock-Free RCU dequeue

e cds_lfq_dequeue_rcu()
e No splice (dequeue all) operation

e Requires a destroy function to dispose of queue

internal structures when queue is freed.
29

 cds_lfq_destroy_rcu()

RCU Lock-Free Hash Table

e urcu/rculthash.h e

e Wait-free lookup aee

e
e Lookup by key,

 cds_lfht_lookup()
e Wait-free iteration

e Iterate on key duplicates

e cds_Ifht_next_duplicate()
 Jterate on entire hash table

e cds_lfht_first()

e cds_lfht_next()

 cds_Ifht_for_each*() 30

RCU Lock-Free Hash Table

 LLock-Free add e

 Allows duplicate keys o
e cds_lfht_add(). aes

e LLock-Free del

e Remove a node.
e cds_ltht_del().

o Wait-Free check if deleted
e cds_lfht_is_node_deleted().

31

RCU Lock-Free Hash Table

e Lock-Free add_unique

* Add node if node's key was not present, return

added node,
* Acts as a lookup if key was present, return existing
node,
e cds_lftht_add_unique().
8o
oo

32

RCU Lock-Free Hash Table

e Lock-Free replace

* Replace existing node if key was present, return
replaced node,

 Return failure if not present, oo e
e cds_lftht_replace(). : : :

e Lock-Free add_replace

e Replace existing node if key was present, return
replaced node,

e Add new node if key was not present.
 cds_lfht_add_replace().

33

RCU Lock-Free Hash Table

* Uniqueness guarantee

e Lookups/traversals executing concurrently with
add_unique, add_replace, replace and del will
never see duplicate keys.

e Automatic resize and node accounting : = =

* Pass flags to cds_lfht_new() e

« CDS_LFHT_AUTO_RESIZE
* CDS_LFHT_ACCOUNTING

* Node accounting internally performed with split-
counters, resize performed internally by call_rcu

worker thread.
34

Userspace RCU Hands-on Tutorial

4O -

RCU Island Game

® http://liburcu.org

Cfici OS .

Userspace RCU Hands-on Tutorial

=% Downloads required
% Userspace RCU library 0.8.0 m
* http://liburcu.org/
s* Follow README file to install
=% RCU Island game
<% git clone git://github.com/efficios/urcu-tutorial
#° Run ./bootstrap

£¥; Solve exercises in exercises/questions.txt

Cfici OS y

CHici OS

3 http://www.efficios.com

& http://liburcu.org/
¢ lttng-dev@lists.lttng.org
W @Ilttng_project

37

