
© 2009 IBM Corporation

Introduction to RCU Concepts

Liberal application of procrastination for accommodation of the
laws of physics – for more than two decades!

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

22 October 2013

© 2009 IBM Corporation2

Mutual Exclusion

What mechanisms can enforce mutual exclusion?

© 2009 IBM Corporation3

Example Application

© 2009 IBM Corporation4

Example Application

Schrödinger wants to construct an in-memory database for the
animals in his zoo (example from CACM article)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

© 2009 IBM Corporation5

Example Application

Schrödinger wants to construct an in-memory database for the
animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu

© 2009 IBM Corporation6

Example Application

Schrödinger wants to construct an in-memory database for the
animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu

Will holding this lock prevent the cat from dying?

© 2009 IBM Corporation7

Read-Only Bucket-Locked Hash Table Performance

2GHz Intel Xeon Westmere-EX (64 CPUs)
 1024 hash buckets

© 2009 IBM Corporation8

Read-Only Bucket-Locked Hash Table Performance

2GHz Intel Xeon Westmere-EX, 1024 hash buckets

Why the dropoff???

© 2009 IBM Corporation9

Varying Number of Hash Buckets

2GHz Intel Xeon Westmere-EX

Still a dropoff...

© 2009 IBM Corporation1
0

NUMA Effects???

 /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index1/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index2/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index3/shared_cpu_list:
–0-7,32-39

Two hardware threads per core, eight cores per socket

Try using only one CPU per socket: CPUs 0, 8, 16, and 24

© 2009 IBM Corporation1
1

Bucket-Locked Hash Performance: 1 CPU/Socket

2GHz Intel Xeon Westmere-EX: This is not the sort of
scalability Schrödinger requires!!!

© 2009 IBM Corporation1
2

Performance of Synchronization Mechanisms

© 2009 IBM Corporation1
3

Problem With Physics #1: Finite Speed of Light

(c) 2012 Melissa Broussard, Creative Commons Share-Alike

© 2009 IBM Corporation1
4

Problem With Physics #2: Atomic Nature of Matter

(c) 2012 Melissa Broussard, Creative Commons Share-Alike

© 2009 IBM Corporation1
5

How Can Software Live With This Hardware???

© 2009 IBM Corporation1
6

Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalability.Only one of something: bad for performance and scalability.
Also typically results in high complexity.Also typically results in high complexity.

© 2009 IBM Corporation1
7

Design Principle: Avoid Bottlenecks

Many instances of something good! Full partitioning even better!!!Many instances of something good! Full partitioning even better!!!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.Avoiding tightly coupled interactions is an excellent way to avoid bugs.

But NUMA effects defeated this for per-bucket locking!!!But NUMA effects defeated this for per-bucket locking!!!

© 2009 IBM Corporation1
8

Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket atomic operation costs ~260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical

section, reducing synchronization overhead to about 1%

Of course, we also need to keep contention low, which
usually means we want short critical sections

–Resolve this by applying parallelism at as high a level as possible
–Parallelize entire applications rather than low-level algorithms!

© 2009 IBM Corporation1
9

Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket atomic operation costs ~260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical

section, reducing synchronization overhead to about 1%

Of course, we also need to keep contention low, which
usually means we want short critical sections

–Resolve this by applying parallelism at as high a level as possible
–Parallelize entire applications rather than low-level algorithms!
–But the low overhead hash-table insertion/deletion operations do not

provide much scope for long critical sections...

© 2009 IBM Corporation2
0

Spin

Design Principle: Avoid Mutual Exclusion!!!

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Dead
Time!!! Reader

Reader

Reader

Reader

Plus lots of time waiting for the lock's cache line...

© 2009 IBM Corporation2
1

Design Principle: Avoiding Mutual Exclusion

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Reader

Reader

Reader

Reader

Reader

Reader

No Dead Time!No Dead Time!

Reader Reader

Reader

Reader

ReaderReader

© 2009 IBM Corporation2
2

But How Can This Possibly Be Implemented???

© 2009 IBM Corporation2
3

But How Can This Possibly Be Implemented???

© 2009 IBM Corporation2
4

But How Can This Possibly Be Implemented???

Hazard Pointers and RCU!!!

© 2009 IBM Corporation2
5

RCU: Keep It Basic: Guarantee Only Existence

Pointer to RCU-protected object guaranteed to exist
throughout RCU read-side critical section

rcu_read_lock(); /* Start critical section. */
p = rcu_dereference(cptr);
/* *p guaranteed to exist. */
do_something_with(p);
rcu_read_unlock(); /* End critical section. */
/* *p might be freed!!! */

The rcu_read_lock(), rcu_dereference() and
rcu_read_unlock() primitives are very light weight

However, updaters must take care...

© 2009 IBM Corporation2
6

RCU: How Updaters Guarantee Existence

Updaters must wait for an RCU grace period to elapse between
making something inaccessible to readers and freeing it

spin_lock(&updater_lock);
q = cptr;
rcu_assign_pointer(cptr, new_p);
spin_unlock(&updater_lock);
synchronize_rcu(); /* Wait for grace period. */
kfree(q);

RCU grace period waits for all pre-exiting readers to complete
their RCU read-side critical sections

Next slides give diagram representation

© 2009 IBM Corporation2
7

Publication of And Subscription to New Data

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 r
cu

_d
er

ef
er

en
ce

(c
pt

r)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!
rc

u_
as

si
gn

_p
oi

nt
er

()

© 2009 IBM Corporation2
8

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
iz

e
_r

cu
()

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we
possibly tell when they are done???possibly tell when they are done???

fr
ee

()

© 2009 IBM Corporation2
9

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

© 2009 IBM Corporation3
0

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period begins after synchronize_rcu() call and ends after all CPUs
execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

remove cat free cat

© 2009 IBM Corporation3
1

Performance

© 2009 IBM Corporation3
2

Theoretical Performance

71.2 cycles

1
cycle

Uncontended

73 CPUs to
break even with
a single CPU!

144 CPUs to
break even with
a single CPU!!!

71.2 cycles

1
cycle

71.2 cycles

Contended,
No Spinning

1
cycle

RCU (wait-free)

Full performance,
linear scaling,
real-time response

Lo
ck

in
g

(b
lo

ck
in

g)

© 2009 IBM Corporation3
3

Measured Performance

© 2009 IBM Corporation3
4

Schrödinger's Zoo: Read-Only

RCU and hazard pointers scale quite well!!!

© 2009 IBM Corporation3
5

Schrödinger's Zoo: Read-Only Cat-Heavy Workload

RCU handles locality quite well, hazard pointers not bad, bucket locking horribly

© 2009 IBM Corporation3
6

Schrödinger's Zoo: Reads and Updates

© 2009 IBM Corporation3
7

RCU Performance: “Free is a Very Good Price!!!”
And Nothing Is Faster Than Doing Nothing!!!

© 2009 IBM Corporation3
8

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Schrodinger's zoo is in blue: Can't tell exactly when an animal is born
or dies anyway! Plus, no lock you can hold will prevent an animal's death...

© 2009 IBM Corporation3
9

RCU Applicability to the Linux Kernel

© 2009 IBM Corporation4
0

Summary

© 2009 IBM Corporation4
1

Summary

Synchronization overhead is a big issue for parallel programs

Straightforward design techniques can avoid this overhead
–Partition the problem: “Many instances of something good!”
–Avoid expensive operations
–Avoid mutual exclusion

RCU is part of the solution, as is hazard pointers
–Excellent for read-mostly data where staleness and inconsistency OK
–Good for read-mostly data where consistency is required
–Can be OK for read-write data where consistency is required
–Might not be best for update-mostly consistency-required data

• Provide existence guarantees that are useful for scalable updates
–Used heavily in the Linux kernel

Much more information on RCU is available...

© 2009 IBM Corporation4
2

Graphical Summary

© 2009 IBM Corporation4
3

To Probe Further:
 https://queue.acm.org/detail.cfm?id=2488549

– “Structured Deferral: Synchronization via Procrastination”
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

© 2009 IBM Corporation4
4

Legal Statement

 This work represents the view of the author and does not necessarily represent
the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks of International
Business Machines Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be trademarks or service marks
of others.

 Credits:
– This material is based upon work supported by the National Science Foundation under Grant

No. CNS-0719851.
– Joint work with Mathieu Desnoyers, Alan Stern, Michel Dagenais, Manish Gupta, Maged

Michael, Phil Howard, Joshua Triplett, Jonathan Walpole, and the Linux kernel community.
– Additional reviewers: Carsten Weinhold and Mingming Cao.

© 2009 IBM Corporation4
5

Questions?

1

Introduction to Userspace RCU
Data Structures

LinuxCon Europe 2013

mathieu.desnoyers@efficios.com

2

Presenter

 Mathieu Desnoyers

 EfficiOS Inc.

•http://www.efficios.com

Author/Maintainer of

•Userspace RCU,

•LTTng kernel and user-space tracers,

•Babeltrace.

3

Content

 Introduction to major Userspace RCU (URCU)
concepts,

URCU memory model,

URCU APIs
● Atomic operations, helpers, reference counting,

 URCU Concurrent Data Structures (CDS)
● Lists,
● Stacks,
● Queues,
● Hash tables.

4

Content (cont.)

 Userspace RCU hands-on tutorial

5

Data Structure Characteristics

Scalability

 Real-Time Response

Performance

6

Non-Blocking Algorithms

Progress Guarantees

 Lock-free
● guarantee of system progress.

 Wait-free
● also guarantee per-thread progress.

7

Memory Model

Weakly ordered architectures can reorder
memory accesses

CPU 0

x = 1;
y = 1;

CPU 1

r1 = y;
r2 = x;

Initial conditions
x = 0
y = 0

If r2 loads 0, can r1 have loaded 1 ?

8

Memory Model

Weakly ordered architectures can reorder
memory accesses

CPU 0

x = 1;
y = 1;

CPU 1

r1 = y;
r2 = x;

Initial conditions
x = 0
y = 0

If r2 loads 0, can r1 have loaded 1 ?

YES, at leasts on many weakly-ordered architectures.

9

Memory Model

Summary of Memory Ordering
Paul E. McKenney, Memory Ordering in
Modern Microprocessors, Part II,
 http://www.linuxjournal.com/article/8212

10

Memory Model

 But how comes we can usually expect those
accesses to be ordered ?

 Mutual exclusion (locks) are the answer,

 They contain the appropriate memory barriers.

 But what happens if we want to do
synchronization without locks ?

 Need to provide our own memory ordering
guarantees.

11

Memory Model

● Userspace RCU
● Similar memory model as the Linux kernel, for

user-space.
● For details, see Linux Documentation/memory-

barriers.txt

12

Userspace RCU Memory Model

● urcu/arch.h
● memory ordering between processors

● cmm_smp_{mb,rmb,wmb}()
● memory mapped I/O, SMP and UP

● cmm_{mb,rmb,wmb}()
● eventual support for architectures with incoherent

caches
● cmm_smp_{mc,rmc,wmc}()

● urcu/compiler.h
● compiler-level memory access optimisation barrier

● cmm_barrier()

13

Userspace RCU Memory Model (cont.)

● urcu/system.h
● Inter-thread load and store

● CMM_LOAD_SHARED(),
● CMM_STORE_SHARED(),

● Semantic:
● Ensures aligned stores and loads to/from word-sized,

word-aligned data are performed atomically,
● Prevents compiler from merging and refetching

accesses.
● Deals with architectures with incoherent caches,

14

Userspace RCU Memory Model (cont.)

 Atomic operations and data structure APIs have
their own memory ordering semantic
documented.

15

Userspace RCU Atomic Operations

● Similar to the Linux kernel atomic operations,
● urcu/uatomic.h

● uatomic_{add,sub,dec,inc)_return(),
uatomic_cmpxchg(), uatomic_xchg() imply full
memory barrier (smp_mb()).

● uatomic_{add,sub,dec,inc,or,and,read,set}() imply
no memory barrier.

● cmm_smp_mb__{before,after}_uatomic_*()
provide associated memory barriers.

16

Userspace RCU Helpers

● urcu/compiler.h
● Get pointer to structure containing a given field

from pointer to field.
● caa_container_of()

● urcu/compat-tls.h
● Thread-Local Storage

● Compiler __thread when available,
● Fallback on pthread keys,
● DECLARE_URCU_TLS(),
● DEFINE_URCU_TLS(),
● URCU_TLS().

17

Userspace RCU Reference Counting

● Reference counting based on Userspace RCU
atomic operations,

● urcu/ref.h
● urcu_ref_{set,init,get,put}()

18

URCU Concurrent Data Structures

● Navigating through URCU CDS API and
implementation

● Example of wait-free concurrent queue
● urcu/wfcqueue.h: header to be included be

applications,
● If _LGPL_SOURCE is defined before include,

functions are inlined, else implementation in
liburcu-cds.so is called,

● urcu/wfcqueue.h and wfcqueue.c implement
exposed declarations and LGPL wrapping logic,

● Implementation is found in urcu/static/wfcqueue.h.

19

URCU lists

● Circular doubly-linked lists,
● Linux kernel alike list API

● urcu/list.h
● cds_list_{add,add_tail,del,empty,replace,splice}()
● cds_list_for_each*()

● Linux kernel alike RCU list API
● Multiple RCU readers concurrent with single

updater.
● urcu/rculist.h
● cds_list_{add,add_tail,del,replace,for_each*}_rcu()

20

URCU hlist

● Linear doubly-linked lists,
● Similar to Linux kernel hlists,
● Meant to be used in hash tables, where size of list

head pointer matters,
● urcu/hlist.h

● cds_hlist_{add_head,del,for_each*}()

● urcu/rcuhlist.h
● cds_hlist_{add_head,del,for_each*}_rcu()

21

Stack (Wait-Free Push, Blocking Pop)

● urcu/wfstack.h
● N push / N pop
● Wait-free push

● cds_wfs_push()
● Wait-free emptiness check

● cds_wfs_empty()
● Blocking/nonblocking pop

● __cds_wfs_pop_blocking()
● __cds_wfs_pop_nonblocking()
● subject to existence guarantee constraints

● Can be provided by either RCU or mutual exclusion
on pop and pop all.

22

Stack (Wait-Free Push, Blocking Pop)

● urcu/wfstack.h (cont.)
● Wait-free pop all

● __cds_wfs_pop_all()
● subject to existence guarantee constraints

● Can be provided by either RCU or mutual exclusion
on pop and pop all.

● Blocking/nonblocking iteration on stack returned
by pop all

● cds_wfs_for_each_blocking*()
● cds_wfs_first(), cds_wfs_next_blocking(),

cds_wfs_next_nonblocking()

23

Lock-Free Stack

● urcu/lfstack.h
● N push / N pop
● Wait-free emptiness check

● cds_lfs_empty()
● Lock-free push

● cds_lfs_push()
● Lock-free pop

● __cds_lfs_pop()
● subject to existence guarantee constraints

● Can be provided by either RCU or mutual exclusion
on pop and pop all.

24

Lock-Free Stack

● urcu/lfstack.h (cont.)
● Lock-free pop all and iteration on the returned

stack
● __cds_lfs_pop_all()
● subject to existence guarantee constraints

● Can be provided by either RCU or mutual exclusion
on pop and pop all.

● cds_lfs_for_each*()

25

Wait-Free Concurrent Queue

● urcu/wfcqueue.h
● N enqueue / 1 dequeue
● Wait-free enqueue

● cds_wfcq_enqueue()
● Wait-free emptiness check

● cds_wfcq_empty()
● Blocking/nonblocking dequeue

● __cds_wfcq_dequeue_blocking()
● __cds_wfcq_dequeue_nonblocking()

● Mutual exclusion of dequeue, splice and iteration
required.

26

Wait-Free Concurrent Queue

● urcu/wfcqueue.h (cont.)
● Blocking/nonblocking splice (dequeue all)

● __cds_wfcq_splice_blocking()
● __cds_wfcq_splice_nonblocking()

● Mutual exclusion of dequeue, splice and iteration
required.

27

Wait-Free Concurrent Queue

● urcu/wfcqueue.h (cont.)
● Blocking/nonblocking iteration

● __cds_wfcq_first_blocking()
● __cds_wfcq_first_nonblocking()
● __cds_wfcq_next_blocking()
● __cds_wfcq_next_nonblocking()
● __cds_wfcq_for_each_blocking*()

● Mutual exclusion of dequeue, splice and iteration
required.

28

Wait-Free Concurrent Queue

● urcu/wfcqueue.h (cont.)
● Splice operations can be chained, so N queues can

be merged in N operations.
● Independent of the number of elements in each

queue.

29

Lock-Free Queue

● urcu/rculfqueue.h
● Requires RCU synchronization for queue nodes
● Lock-Free RCU enqueue

● cds_lfq_enqueue_rcu()

● Lock-Free RCU dequeue
● cds_lfq_dequeue_rcu()

● No splice (dequeue all) operation
● Requires a destroy function to dispose of queue

internal structures when queue is freed.
● cds_lfq_destroy_rcu()

30

RCU Lock-Free Hash Table

● urcu/rculfhash.h
● Wait-free lookup

● Lookup by key,
● cds_lfht_lookup()

● Wait-free iteration
● Iterate on key duplicates

● cds_lfht_next_duplicate()
● Iterate on entire hash table

● cds_lfht_first()
● cds_lfht_next()
● cds_lfht_for_each*()

31

RCU Lock-Free Hash Table

● Lock-Free add
● Allows duplicate keys
● cds_lfht_add().

● Lock-Free del
● Remove a node.
● cds_lfht_del().

● Wait-Free check if deleted
● cds_lfht_is_node_deleted().

32

RCU Lock-Free Hash Table

● Lock-Free add_unique
● Add node if node's key was not present, return

added node,
● Acts as a lookup if key was present, return existing

node,
● cds_lfht_add_unique().

33

RCU Lock-Free Hash Table

● Lock-Free replace
● Replace existing node if key was present, return

replaced node,
● Return failure if not present,
● cds_lfht_replace().

● Lock-Free add_replace
● Replace existing node if key was present, return

replaced node,
● Add new node if key was not present.
● cds_lfht_add_replace().

34

RCU Lock-Free Hash Table

● Uniqueness guarantee
● Lookups/traversals executing concurrently with

add_unique, add_replace, replace and del will
never see duplicate keys.

● Automatic resize and node accounting
● Pass flags to cds_lfht_new()

● CDS_LFHT_AUTO_RESIZE
● CDS_LFHT_ACCOUNTING

● Node accounting internally performed with split-
counters, resize performed internally by call_rcu
worker thread.

35

RCU Island Game

Userspace RCU Hands-on Tutorial

 http://liburcu.org

36

Userspace RCU Hands-on Tutorial

 Downloads required
 Userspace RCU library 0.8.0

 http://liburcu.org/
 Follow README file to install

 RCU Island game
 git clone git://github.com/efficios/urcu-tutorial
 Run ./bootstrap
 Solve exercises in exercises/questions.txt

37

Thank you!

 http://liburcu.org/

 lttng-dev@lists.lttng.org

 @lttng_project

 http://www.efficios.com

