
Adding Linux Restartable Sequences
(RSEQ) Support in glibc

GNU Tools Cauldron 2019GNU Tools Cauldron 2019

mathieu.desnoyers@efcios.com

ContentContent

● Restartable Sequences (RSEQ) Introduction
● Use-Cases
● Benchmarks
● Linux Integration
● glibc Integration
● Requirements
● Missing Pieces
● Open Issues
● Ongoing Work

3

What are Restartable Sequences (RSEQ) ?What are Restartable Sequences (RSEQ) ?

● Linux kernel system call registering a Thread-Local Storage
area allowing user-space to perform updates on per-cpu data
efficiently,

● Achieve critical section atomicity with respect to scheduler by
aborting critical sections on preemption and signal delivery
rather than disabling preemption.

4

RSEQ Structure MembersRSEQ Structure Members

Restartable Sequence Critical Section

struct rseq_cs {
 void *start_ip;
 uint64_t post_commit_offset;
 void *abort_ip;
 [...]
};

struct rseq {
 int32_t cpu_id;
 struct rseq_cs *rseq_cs;
 [...]
};

Thread-Local Storage __rseq_abi:

Abort Handler

5

RSEQ Use-CasesRSEQ Use-Cases

● Per-CPU pool memory allocation,
● Per-CPU ring buffer,
● Per-CPU statistics accounting,
● Per-CPU RCU grace period tracking,
● User-space PMU counters read from user-space on big/LITTLE

ARM64,
● Spinlock improvements:

– Preemption tracking, NUMA awareness.

6

RSEQ Benchmarks: Get Current CPU NumberRSEQ Benchmarks: Get Current CPU Number

7

RSEQ Benchmarks: Statistics CounterRSEQ Benchmarks: Statistics Counter

8

RSEQ Benchmarks: LTTng-UST Ring BufferRSEQ Benchmarks: LTTng-UST Ring Buffer

9

Restartable Sequences Linux IntegrationRestartable Sequences Linux Integration

● Linux 4.18:
– RSEQ system call merged,

– RSEQ wired up for x86 32/64, powerpc 32/64, arm 32, mips 32/64,

● Linux 4.19:
– RSEQ wired up for arm 64, s390 32/64,

10

RSEQ Integration within glibcRSEQ Integration within glibc

● Registration/Unregistration of __rseq_abi TLS within glibc on C
startup, and thread start/exit.

● Public header exposing RSEQ signature to users:
– Uncommon 4-byte signature prior to abort handlers,

– Security: prevents use of RSEQ as mechanism to redirect execution
to arbitrary code,

– Typically never executed,

– Ideally traps if reached, valid instruction within objdump.

11

RSEQ RequirementsRSEQ Requirements

● Use in application and libraries,
● Use in signal handler,

– Nested on top of early/late thread lifetime, when RSEQ is not
registered,

● Use in library constructors/destructors,
– Dynamic linker needs to access TLS early for RSEQ registration

before invoking library constructors,

12

RSEQ RequirementsRSEQ Requirements

● Allow internal use within glibc:
– sched_getcpu(3),

– Memory allocator,

– Locking,

● Smooth integration of RSEQ support within the user-space
ecosystem:
– Allow applications/libraries to use RSEQ with older glibc,

– Without breaking upgrade to glibc supporting RSEQ.

13

Missing Pieces: GDB SupportMissing Pieces: GDB Support

● If debugger/emulator single-steps within RSEQ critical section,
it is always aborted,

● If abort triggers a retry: no progress.
● Proposed approach:

– Skip RSEQ critical sections,

– Similar to handling of LL/SC on various architectures,

● RSEQ headers emit information about all critical sections within
__rseq_cs_ptr_array and __rseq_exit_point_array sections.

14

Missing Pieces: RSEQ glibc integrationMissing Pieces: RSEQ glibc integration

● No concensus on __rseq_handled symbol,
– Aims to allow applications/libraries to use RSEQ with old glibc, with

smooth upgrade path.

● Could be removed from patch set if a few problems are solved
in glibc.

15

Open Issues in glibcOpen Issues in glibc

● Signals are enabled on thread startup:
– RSEQ is not registered yet,

– Disabling signals on thread startup/teardown would be an option.

● TLS cannot be touched by dynamic linker code:
– Change glibc to allow TLS to be touched by dynamic linker before

running library constructors.

16

Ongoing Work (Linux kernel)Ongoing Work (Linux kernel)

● Allow concurrent update of remote per-CPU data:
– CPU-hotplug aware.

● Use-cases:
– LTTng consumer daemon requiring to write into each per-CPU ring

buffers periodically (flush timer),

– Cleanup of free memory reserved for a CPU after it is unplugged.
● The CPU may be brought online again (concurrently).

17

Questions ?Questions ?

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

